Abstract:
Various embodiments include a system having: at least one computing device configured to tune a set of gas turbines (GTs) by performing actions including: commanding each GT in the set of GTs to a base load level, based upon a measured ambient condition for each GT; commanding each GT in the set of GTs to adjust a respective exhaust energy to match a nominal exhaust energy value, and subsequently measuring an actual power output value for each GT; and adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective measured actual power output value and a nominal power output value at the ambient condition.
Abstract:
Various embodiments include a system having: at least one computing device configured to tune a set of gas turbines (GTs) by performing actions including: commanding each GT in the set of GTs to a base load level, based upon a measured ambient condition for each GT; commanding each GT in the set of GTs to adjust a respective power output to match a nominal power output value, and subsequently measuring an actual exhaust energy value for each GT; and adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective measured actual exhaust energy value and a nominal exhaust energy value at the ambient condition.
Abstract:
Commanding GTs to base load level based upon measured ambient condition for each GT; commanding each GT to adjust a power output to match scaled power output value equal to a fraction of a difference between the respective power output and a nominal power output value, and measuring actual emissions value for each GT during the adjusting of the respective power output; adjusting operating condition of each GT based upon a difference between the respective measured actual emissions value, a nominal emissions value at the ambient condition and emissions scale factor; updating a pre-existing emissions model for each GT based upon the adjusted operating; running set of operating conditions on each GT and measuring updated parameters for each GT including an updated emissions value; and refining updated pre-existing emissions model based upon a difference between the updated emissions value and the updated pre-existing emissions model.
Abstract:
Various embodiments include a system having: at least one computing device configured to tune a set of gas turbines (GTs) by performing actions including: commanding each GT in the set of GTs to a base load level, based upon a measured ambient condition for each GT; commanding each GT in the set of GTs to adjust a respective power output to match a nominal power output value, and subsequently measuring an actual emissions value for each GT; adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective measured actual emissions value and a nominal emissions value at the ambient condition; and building an independent emissions model for each GT based upon the measured actual emissions value for each GT and the adjusted operating condition of each GT.
Abstract:
A system for controlling gas turbine output for a gas turbine power plant is disclosed herein. The power plant includes a gas turbine including a combustor downstream from a compressor, a turbine downstream from the combustor and an exhaust duct downstream from the outlet of the turbine. The exhaust duct receives exhaust gas from the turbine outlet. The system further includes an exhaust damper operably connected to a downstream end of the exhaust duct. The exhaust damper increases backpressure at the turbine outlet and restricts axial exit velocity of the exhaust gas exiting the turbine outlet when the exhaust damper is partially closed. A method for controlling gas turbine output is also provided herein.
Abstract:
Various embodiments include a system having: at least one computing device configured to tune a set of gas turbines (GTs) by performing actions including: commanding each GT in the set of GTs to a base load level, based upon a measured ambient condition for each GT; commanding each GT in the set of GTs to adjust a respective fuel flow value to match a nominal fuel flow value, and subsequently measuring an actual exhaust energy value for each GT; and adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective measured actual exhaust energy value and a nominal exhaust energy value at the ambient condition.
Abstract:
Various embodiments include a system having: at least one computing device configured to tune a set of gas turbines (GTs) by performing actions including: commanding each GT in the set of GTs to a base load level, based upon a measured ambient condition for each GT; commanding each GT in the set of GTs to adjust a respective fuel flow to match a nominal fuel flow value, and subsequently measuring an actual power output value for each GT; and adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective measured actual power output value and a nominal power output value at the ambient condition.
Abstract:
Various embodiments include a system having: at least one computing device configured to tune a set of gas turbines (GTs) by performing actions including: commanding each GT in the set of GTs to a base load level, based upon a measured ambient condition for each GT; commanding each GT in the set of GTs to adjust a respective power output to match a nominal power output value, and subsequently measuring an actual emissions value for each GT; and adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective measured actual emissions value and a nominal emissions value at the ambient condition.
Abstract:
Various embodiments include a system having: at least one computing device configured to tune a set of gas turbines (GTs) by performing actions including: commanding each GT in the set of GTs to a base load level, based upon a measured ambient condition for each GT; commanding each GT in the set of GTs to adjust a respective exhaust energy to match a nominal exhaust energy value, and subsequently measuring an actual fuel flow value for each GT; and adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective measured actual fuel flow value and a nominal fuel flow value at the ambient condition.
Abstract:
Various embodiments include a system having: at least one computing device configured to tune a set of gas turbines (GTs) by performing actions including: commanding each GT in the set of GTs to a base load level, based upon a measured ambient condition for each GT; commanding each GT in the set of GTs to adjust a respective exhaust energy to match a nominal exhaust energy value, and subsequently measuring an actual emissions value for each GT; and adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective measured actual emissions value and a nominal emissions value at the ambient condition.