Abstract:
A method of operating a gas turbine engine includes measuring an exhaust gas temperature of the gas turbine engine. A first stage turbine nozzle assembly of the gas turbine engine is adjusted to a first position. A firing temperature of the gas turbine engine is determined based on the exhaust gas temperature. The firing temperature is compared to a threshold value and a difference value is determined therefrom. If the difference value exceeds a threshold value, the first stage turbine nozzle assembly is adjusted to a second position such that the firing temperature is substantially equal to the threshold value.
Abstract:
An article for high temperature service is presented herein. One embodiment is an article including a substrate having a silicon-bearing ceramic matrix composite; and a layer disposed over the substrate, wherein the layer includes silicon and a dopant, the dopant including aluminum. In another embodiment, the article includes a ceramic matrix composite substrate, wherein the composite includes a silicon-bearing ceramic and a dopant, the dopant including aluminum; a bond coat disposed over the substrate, where the bond coat includes elemental silicon, a silicon alloy, a silicide, or combinations including any of the aforementioned; and a coating disposed over the bond coat, the coating including a silicate (such as an aluminosilicate or rare earth silicate), yttria-stabilized zirconia, or a combination including any of the aforementioned.
Abstract:
Coated components, along with methods of their formation, are provided. The coated component includes a ceramic substrate having a surface; an intermediate layer on the surface of the ceramic substrate; and an environmental barrier coating on the intermediate layer. The intermediate layer includes a carbon-sink material that inhibits accumulation of free carbon from a carbon-containing species within the intermediate layer, the ceramic substrate, or both.
Abstract:
A coated component may have a consumable coating that protects the component from dust. A coated component may include a silicon containing substrate defining a substrate surface, a barrier coating on the substrate surface, with the barrier coating defining a barrier surface, and a consumable coating on the barrier surface. The consumable coating may include a ceramic oxide that includes a silicate. A component, such as a component of a turbomachine, may be protected from dust by applying a consumable coating on the component.
Abstract:
A method of operating a gas turbine engine includes measuring an exhaust gas temperature of the gas turbine engine. A first stage turbine nozzle assembly of the gas turbine engine is adjusted to a first position. A firing temperature of the gas turbine engine is determined based on the exhaust gas temperature. The firing temperature is compared to a threshold value and a difference value is determined therefrom. If the difference value exceeds a threshold value, the first stage turbine nozzle assembly is adjusted to a second position such that the firing temperature is substantially equal to the threshold value.
Abstract:
A ceramic matrix composite article includes a melt infiltration ceramic matrix composite substrate comprising a ceramic fiber reinforcement material in a ceramic matrix material having a free silicon proportion, and a chemical vapor infiltration ceramic matrix composite outer layer comprising a ceramic fiber reinforcement material in a ceramic matrix material having essentially no free silicon proportion disposed on an outer surface of at least a portion of the substrate.
Abstract:
An article comprises a substrate comprising a ceramic matrix composite; a first layer disposed over the substrate, the first layer comprising an interconnected first silicide, and a second phase; and a second layer disposed over the first layer, the second layer comprising a second silicide in mass transfer communication with the first silicide.
Abstract:
An article for use in aggressive environments is presented. In one embodiment, the article comprises a substrate and a self-sealing and substantially hermetic sealing layer comprising an alkaline-earth aluminosilicate disposed over the bondcoat. The substrate may be any high-temperature material, including, for instance, silicon-bearing ceramics and ceramic matrix composites.