Abstract:
Thermocouples for high temperature applications are provided. A thermocouple includes a vessel formed from a dielectric material, the vessel defining a first chamber and a second chamber, the first chamber and second chamber in fluid communication. The thermocouple further includes a first thermoelement disposed in the first chamber, the first thermoelement formed from a first thermoelectric material. The thermocouple further includes a second thermoelement disposed in the second chamber, the second thermoelement formed from a second thermoelectric material different from the first thermoelectric material, and wherein the second thermoelement is a liquid at operating conditions of the thermocouple.
Abstract:
A measurement system for a gas turbine engine is provided. The measurement system comprises a sensor assembly. The measurement system also includes multiple sensors coupled to the sensor assembly. The sensor assembly is configured to be removably inserted within a space defined by a circumferential track embedded within an inner diameter of a casing of the gas turbine engine without having to disassemble the casing.
Abstract:
Systems and methods include a blade monitoring system. The blade monitoring system includes a processor. The processor is configured to receive a sensor signal from a sensor configured to observe a blade of the turbomachinery. The processor is also configured to derive a measurement based on a marking disposed on the blade of the turbomachinery, wherein the marking comprises a discrete feature; and to display the measurement to an operator of the turbomachinery
Abstract:
A method for determining an arrival-time of a rotor blade that includes attaching an RF reader to a stationary surface and an RF tag to the rotor blade. Time-of-flight data points are collected via an RF monitoring process that includes: emitting an RF signal from the RF reader and recording a first time; receiving the RF signal at the RF tag and emitting a return RF signal by the RF tag in response thereto; receiving the return RF signal at the RF reader and recording a second time; and determining the time-of-flight data point as being the duration occurring between the first time and the second time. The RF monitoring process is repeated until multiple time-of-flight data points are collected. A minimum time-of-flight is determined from the multiple time-of-flight data points, and the arrival-time for the rotor blade is determined as being a time that corresponds to the minimum time-of-flight.
Abstract:
A method for determining an arrival-time of a rotor blade in a turbine engine that includes the steps of: having an RF reader attached to a stationary surface in the turbine engine; having an RF tag attached to a first region of the rotor blade; having a reference RF tag attached to a rotating structure near the RF tag; in relation to a first revolution of the rotor blade occurring during the operation of the turbine engine, collecting an arrival-time for each of the RF tag and the reference RF tag with the RF reader via an RF monitoring process; comparing the arrival-time of the RF tag to the arrival-time of the reference RF tag to determine an arrival-time test result for the first region of the rotor blade for the first revolution.
Abstract:
The present application thus provides a thermal barrier coating spallation detection system for a gas turbine. The thermal barrier coating spallation detection system may include a hot gas path component with a phosphor layer and a thermal barrier coating, a stimulant radiation source, and an optical device such that the optical device directs stimulant radiation at the thermal barrier coating and receives emission radiation. A change in the received emission radiation indicates spallation of the thermal barrier coating.
Abstract:
An extension arm for attachment to a resistance welding hand piece is disclosed. The extension arm may include an elongated main body extending between a first end and a second end. The first end of the elongated main body may be attachable to the hand piece such that the second end of the elongated main body is spaced apart from the hand piece. The extension arm also may include an electrode extending from the second end of the elongated main body. The electrode may be in electrical communication with the hand piece by way of at least one electrical pathway.
Abstract:
A method for routing wires from a rotor shaft of a turbomachine includes routing a plurality of wire bundles through an end portion of the rotor shaft and into an annular extension shaft which is coupled to the end portion of the rotor shaft, threading each wire bundle through a corresponding thru-hole of a plurality of thru-holes defined in an annular wire barrel, inserting the wire barrel into the extension shaft and fixedly connecting the wire barrel to the extension shaft.
Abstract:
A system for dissipating thermal energy from electronic components disposed within a rotatable shaft includes an annular carrier shaft having one end formed to couple to an end of a rotor shaft. The system also includes a transmitter assembly. The transmitter includes an outer casing, a daughter board and a circuit board electronically coupled to the daughter board within an inner pocket of the transmitter housing. The circuit board comprises a strip of thermally conductive material. The transmitter assembly further includes a lid that at least partially seals the inner pocket. A contact surface of the lid is in thermal communication with the thermally conductive material of the circuit board and at least a portion of a top surface of the lid is thermally coupled to an inner surface of the carrier shaft during rotation thereof. A method for dissipating thermal energy away from the circuit board is also provided.
Abstract:
A splicer device is disclosed herein. The splicer device includes a main body having an internal passage formed between a first end of the main body and a second end of the main body. The first end of the main body is configured to receive at least one first wire, and the second end of the main body is configured to receive at least one second wire. A window is disposed within the main body and in communication with the internal passage between the first end of the main body and the second end of the main body for accessing and splicing the at least one first wire and the at least one second wire.