Abstract:
In accordance with one aspect of the present system, an X-ray detector of an X-ray imaging system includes a communication module configured to receive a pre-shot image from a detection circuitry and receive one or more pre-shot parameters from a source controller of the X-ray imaging system. The X-ray detector further includes an analysis module configured to determine one or more image characteristics of the pre-shot image. The X-ray detector further includes a determination module configured to calculate one or more main-shot parameters based on the one or more pre-shot parameters and the one or more image characteristics. The determination module is further configured to send the one or more main-shot parameters to the source controller of the X-ray imaging system.
Abstract:
In one embodiment, an X-ray source target is provided that includes two or more layers of X-ray generating material at different depths within a source target for an electron beam. In one such embodiment the X-ray generating material in each layer does not extend fully across an underlying substrate surface.
Abstract:
An X-ray tube assembly includes an electron beam transport tube, a beam tube protection assembly, and a control module. The electron beam transport tube includes an opening configured for passage of an electron beam, and includes an inner surface bounding the opening along a length of the electron beam transport tube. The beam tube protection assembly includes a plurality of beam protection electrode segments disposed within the opening of the electron beam transport tube and configured to protect the inner surface of the electron beam transport tube from contact with the electron beam. The control module is configured to determine a direction of the electron beam responsive to information received from the beam tube protection assembly.
Abstract:
An X-ray tube assembly is provided including an emitter configured to emit an electron beam, an emitter focusing electrode, an extraction electrode, and a downstream focusing electrode. The emitter focusing electrode is disposed proximate to the emitter and outward of the emitter in an axial direction. The extraction electrode is disposed downstream of the emitter and the emitter focusing electrode. The extraction electrode has a negative bias voltage setting at which the extraction electrode has a negative bias voltage with respect to the emitter. The downstream focusing electrode is disposed downstream of the extraction electrode, and has a positive bias voltage with respect to the emitter. When the extraction electrode is at the negative bias voltage setting, the electron beam is emitted from an emission area that is smaller than a maximum emission area from which electrons may be emitted.
Abstract:
An X-ray tube includes an emitter, and an electrode assembly. The emitter is configured to emit an electron beam toward a target. The electrode assembly includes at least one electrode having a bias voltage with respect to the emitter. At least one electrode of the electrode assembly is a segmented electrode including a plurality of segments. The plurality of segments includes a first member and a second member. The first member is configured to have a first bias voltage and the second member is configured to have a second bias voltage that is different from the first bias voltage.