Abstract:
A well integrity inspection system configured to inspect a well structure including multiple concentric layers. The well integrity inspection system includes an inspection probe positioned in the well structure. The inspection probe includes a plurality of excitation assemblies for transmitting a plurality of radiation emissions into the well structure. The plurality of excitation assemblies includes at least a neutron excitation assembly and an X-ray excitation assembly. The inspection probe also includes a plurality of detection assemblies configured to receive a plurality of backscatter radiation returns from the well structure. The plurality of detection assemblies includes at least a neutron detection assembly and an X-ray detection assembly. The well integrity inspection system further including a processor operatively coupled to the inspection probe. The processor is configured to determine a well integrity parameter of the well structure based on at least one of the plurality of backscatter radiation returns.
Abstract:
An X-ray tube assembly includes an electron beam transport tube, a beam tube protection assembly, and a control module. The electron beam transport tube includes an opening configured for passage of an electron beam, and includes an inner surface bounding the opening along a length of the electron beam transport tube. The beam tube protection assembly includes a plurality of beam protection electrode segments disposed within the opening of the electron beam transport tube and configured to protect the inner surface of the electron beam transport tube from contact with the electron beam. The control module is configured to determine a direction of the electron beam responsive to information received from the beam tube protection assembly.
Abstract:
A system for melting, sintering, or heat treating a material is provided. The system includes a cathode, an anode, and a focus coil assembly having a quadrupole magnet. The quadrupole magnet includes four poles and a yoke. The four poles are spaced apart and surround a beam cavity. Each of the four poles includes a pole face proximate the beam cavity and an end opposite the pole face. The first and third poles are aligned along an x-axis and configured to have a first magnetic polarity at their respective pole faces and a second magnetic polarity opposite the first magnetic polarity at their respective ends. The second and fourth poles are aligned along a y-axis and configured to have the second magnetic polarity at their respective pole faces and the first magnetic polarity at their respective ends. The yoke surrounds the poles and is coupled to the poles.
Abstract:
A cathode assembly design is provided that includes two flat emitters, a longer emitter filament and a shorter emitter filament. In one implementation the focal spot sizes produced by the long and short emitters overlap over a range. Thus, one emitter filament may be suitable for generating small and concentrated focal spot sizes while the other emitter filament is suitable for generating small and large focal spots sizes.
Abstract:
A detector assembly includes a scintillator configured to generate a light signal in response to an impinging radiation signal from an object, where the scintillator has a first end and a second end. Further, the detector assembly includes a first detector disposed adjacent the scintillator and configured to receive a first portion of the light signal from the scintillator and a second detector operatively coupled to the second end of the scintillator and configured to receive a second portion of the light signal from the scintillator. The detector assembly also includes a reflector operatively coupled to the scintillator and the first detector and configured to guide the light signal from the scintillator to the first detector, where the reflector is configured to redirect the first portion of the light signal by a determined amount to reduce a path length between a radiation source, the object, and the scintillator.
Abstract:
A cathode assembly design is provided that includes two flat emitters, a longer emitter filament and a shorter emitter filament. In one implementation the focal spot sizes produced by the long and short emitters overlap over a range. Thus, one emitter filament may be suitable for generating small and concentrated focal spot sizes while the other emitter filament is suitable for generating small and large focal spots sizes.
Abstract:
A system and method for monitoring and controlling build quality during electron beam manufacturing of a build part. The system may include at least one electron beam source to direct at least one electron beam onto a plurality of deposited layers of metallic powder to form a melt pool, a detector to detect in real-time backscattered energy ejected from the melt pool and indicative of a defect in the build part and generate a detection signal representative of the defect. A controller receives and analyzes the detection signal and generates a corrective signal for control of at least one of the actuator and the at least one electron beam source to direct the at least one electron beam onto the plurality of deposited layers of metallic powder to sequentially consolidate patterned portions of the plurality of deposited metallic powder layers to adaptively form the three-dimensional build part.
Abstract:
An apparatus for inspecting integrity of a multi-barrier wellbore is described. The apparatus includes at least one source to generate radiation to impinge a target volume of the wellbore. The apparatus includes a source collimator having a plurality of alternating blocking channels and passing channels to direct radiation to impinge the target volume, such that the radiation directed from each passing channel forms a plurality of field of views extending radially into the target volume. The apparatus further includes at least one detector to receive backscatter rays arising from each respective field of view from the plurality of field of views and to generate an image representative of an inspected portion of the wellbore. The apparatus is useful for inspecting very small volumes in the multiple barriers of the wellbore and determine the integrity of the wellbore based on the different densities in the image of the inspected portion.
Abstract:
A detector assembly includes scintillators configured to generate a light signal in response to an impinging backscatter signal, where the scintillators are arranged in a first pattern, a plurality of first detectors, where each first detector is coupled to a scintillator and configured to receive a first portion of a light signal from that scintillator, and where the first detectors are arranged in a second pattern aligned with the first pattern, a plurality of second detectors, where each second detector is disposed adjacent a scintillator and configured to receive a second portion of the light signal from that scintillator, and where the plurality of second detectors is arranged in a third pattern, and a scintillator collimator including a plurality of openings and configured to selectively receive the backscatter signal, where the detector assembly is configured to provide depth resolution, azimuthal resolution, a defect type, a defect size, or combinations thereof.
Abstract:
An X-ray tube assembly includes an electron beam transport tube, a beam tube protection assembly, and a control module. The electron beam transport tube includes an opening configured for passage of an electron beam, and includes an inner surface bounding the opening along a length of the electron beam transport tube. The beam tube protection assembly includes a plurality of beam protection electrode segments disposed within the opening of the electron beam transport tube and configured to protect the inner surface of the electron beam transport tube from contact with the electron beam. The control module is configured to determine a direction of the electron beam responsive to information received from the beam tube protection assembly.