Abstract:
Provided is an X-ray generator including an electron passage in an electron-passage forming member; and a target on an insulative substrate. The transmission X-ray generator irradiates the target with electrons that have passed through the electron passage to generate X-rays. The target is provided at a central region of the substrate; the electron passage accommodates a secondary-X-ray generating section that generates X-rays by irradiation with electrons reflected from the target; the secondary-X-ray generating section and the target are disposed so that both of X-rays generated by direct irradiation of the target with the electrons and X-rays generated by irradiation of the secondary-X-ray generating section with the electrons reflected from the target are radiated to the outside; and at least part of the peripheral region of the substrate has higher transmittance for the X-rays generated at the secondary-X-ray generating section than the central region of the substrate.
Abstract:
In an X-ray generation apparatus of transmission type including an electron emission source, and a target generating an X-ray with collision of electrons emitted from the electron emission source against the target, the X-ray generation apparatus further includes a secondary X-ray generation portion generating an X-ray with collision of electrons reflected by the target against the secondary X-ray generation portion, and the secondary X-ray generation portion and the target are arranged such that the X-ray generated with the direct collision of the electrons against the target and the X-ray generated with the collision of the electrons reflected by the target against the secondary X-ray generation portion are both radiated to an outside. X-ray generation efficiency is increased by effectively utilizing the electrons reflected by the target.
Abstract:
The present invention is a shielded anode having an anode with a surface facing an electron beam and a shield configured to encompass the anode surface. The shield has at least one aperture and an internal surface facing the anode surface. The shield internal surface and anode surface are separated by a gap in the range of 1 mm to 10 mm. The shield of the present invention is fabricated from a material, such as graphite, that is substantially transmissive to X-ray photons.
Abstract:
The disclosed subject matter includes devices and methods relating to anode assemblies and/or X-ray assemblies. In some aspects, a method of forming an X-ray assembly may include providing an anode base formed of a first material and including a first end. The method may include depositing a second material different from the first material over a first surface of the anode base to form a coated portion of the anode base. The coated portion may be configured such that some backscattered electrons do not travel beyond the coated portion.
Abstract:
An X-ray generation tube includes: an anode including a target configured to generate X-rays under irradiation of electrons, and an anode member electrically connected to the target; a cathode including an electron emitting source configured to emit an electron beam in a direction towards the target, and a cathode member electrically connected to the electron emitting source; and an insulating tube extending between the anode member and the cathode member. The anode further includes an inner circumferential anode layer electrically connected to the anode member, the inner circumferential anode layer extending along an inner circumferential face of the insulating tube, and is remote from the cathode member.
Abstract:
An x-ray tube has a backscatter electron trap to prevent extra focal radiation caused by backscattered electrons from the focal spot from passing through the beam exit window to an exterior of the x-ray tube. The backscatter electron trap has a surface that faces the x-ray beam in the x-ray tube. No portion of that surface is visible both from an arbitrary point in the x-ray beam outside of the x-ray tube and from an arbitrary point at the focal spot.
Abstract:
An X-ray tube assembly includes an electron beam transport tube, a beam tube protection assembly, and a control module. The electron beam transport tube includes an opening configured for passage of an electron beam, and includes an inner surface bounding the opening along a length of the electron beam transport tube. The beam tube protection assembly includes a plurality of beam protection electrode segments disposed within the opening of the electron beam transport tube and configured to protect the inner surface of the electron beam transport tube from contact with the electron beam. The control module is configured to determine a direction of the electron beam responsive to information received from the beam tube protection assembly.
Abstract:
The present invention provides a radiation generating tube which suppresses electrical charging of an inner wall of an insulating tube attributable to electron emission from a junction between the insulating tube and a cathode and which has improved voltage withstand capability. The radiation generating tube comprising: a hollow insulating tube; a cathode and an anode respectively bonded to both ends of the insulating tube; and an electron emission source provided on the cathode, the radiation generating tube having a vacuum interior space. The electron emission source includes an electron emitting portion in the interior space, and the insulating tube includes a protrusion that protrudes into the interior space.
Abstract:
Provided is an X-ray generator comprising a cathode for generating electrons; a rotating anode having a cylindrical electron impingement surface, an X-ray focal point being formed by a region in which the electrons impinge upon the electron impingement surface; and a Wehnelt electrode for imparting an electric field to the electrons emitted from the cathode. The Wehnelt electrode has a field formation surface for forming the electric field, and an electron passage aperture formed by the field formation surface. The field formation surface of the Wehnelt electrode is inclined with respect to a plane tangent to an outer circumferential surface of the rotating anode at the center of the X-ray focal point. The center of the cathode is in a plane orthogonal to the field formation surface and aligned with the center of the electron passage aperture.
Abstract:
Provided is an X-ray generator for generating X-rays from an X-ray focal point that is a region in which electrons emitted from a filament impinge upon a rotating anode. The X-ray generator has a Wehnelt electrode for surrounding the filament, an attachment part formed integrally with the Wehnelt electrode, a pedestal to which the attachment part is attached, and a casing for housing the pedestal and the anticathode. The width of the space in which the anticathode is housed by the casing is less than the width of the space in which the pedestal is housed by the casing. The Wehnelt electrode extends into the space in which the anticathode is housed by the casing, in a state in which the attachment part is attached to the pedestal.