Abstract:
In accordance with one aspect of the present system, a dual energy X-ray imaging system includes a communication module configured to receive a pre-shot image from a detection circuitry and receive one or more pre-shot parameters from a source controller of the dual energy X-ray imaging system. The dual energy X-ray imaging system further includes an analysis module configured to determine one or more image characteristics of the pre-shot image. The dual energy X-ray imaging system further includes a determination module configured to calculate a first and a second set of main-shot parameters based on the one or more pre-shot parameters and the one or more image characteristics of the pre-shot image. The determination module is further configured to send the one or more main-shot parameters to the source controller of the dual energy X-ray imaging system.
Abstract:
A portable x-ray system includes a light weight x-ray head including an x-ray tube and a high voltage (HV) tank, wherein the HV tank comprises a compact voltage multiplier configured to receive a low voltage signal and generate a high voltage signal based on the received low voltage signal. Also, the portable x-ray system includes a carrying case comprising low voltage power electronics coupled to the light weight x-ray head through a low voltage cable, and configured to send the low voltage signal to the light weight x-ray head. In addition, the low voltage power electronics is distributed in a predefined space in the carrying case in such a way that a weight of the light weight x-ray head is counter weighed by a weight of the low voltage power electronics to stabilize the portable x-ray system when the light weight x-ray head is rotated in one or more directions.
Abstract:
An apparatus and method for providing a predefined x-ray field is presented. Briefly in accordance with one aspect of the present disclosure, the apparatus includes a cathode unit configured to emit electrons within a vacuum chamber. The apparatus further includes an anode unit configured to generate x-rays when the emitted electrons impinge on a target surface of the anode unit. Also, the apparatus includes a collimating unit comprising a primary set of blades disposed in the vacuum chamber at a first distance from the anode unit for collimating the generated x-rays to provide the predefined x-ray field at a detector.
Abstract:
An emitter device having an emission surface includes a plurality of ligaments configured to emit electrons in response to an applied electric field resulting from an applied electrical voltage. Further, the emitter device includes a plurality of slots configured to provide physical separation between two or more adjacently disposed ligaments of the plurality of ligaments, where one or more slots of the plurality of slots define an electrical path. Moreover, the emitter device includes a low work function layer disposed on at least a portion of a ligament of the plurality of ligaments.
Abstract:
An X-ray tube assembly includes an electron beam transport tube, a beam tube protection assembly, and a control module. The electron beam transport tube includes an opening configured for passage of an electron beam, and includes an inner surface bounding the opening along a length of the electron beam transport tube. The beam tube protection assembly includes a plurality of beam protection electrode segments disposed within the opening of the electron beam transport tube and configured to protect the inner surface of the electron beam transport tube from contact with the electron beam. The control module is configured to determine a direction of the electron beam responsive to information received from the beam tube protection assembly.
Abstract:
In accordance with one aspect of the present system, an X-ray detector of an X-ray imaging system includes a communication module configured to receive a pre-shot image from a detection circuitry and receive one or more pre-shot parameters from a source controller of the X-ray imaging system. The X-ray detector further includes an analysis module configured to determine one or more image characteristics of the pre-shot image. The X-ray detector further includes a determination module configured to calculate one or more main-shot parameters based on the one or more pre-shot parameters and the one or more image characteristics. The determination module is further configured to send the one or more main-shot parameters to the source controller of the X-ray imaging system.
Abstract:
An X-ray tube assembly includes an electron beam transport tube, a beam tube protection assembly, and a control module. The electron beam transport tube includes an opening configured for passage of an electron beam, and includes an inner surface bounding the opening along a length of the electron beam transport tube. The beam tube protection assembly includes a plurality of beam protection electrode segments disposed within the opening of the electron beam transport tube and configured to protect the inner surface of the electron beam transport tube from contact with the electron beam. The control module is configured to determine a direction of the electron beam responsive to information received from the beam tube protection assembly.
Abstract:
An X-ray tube assembly is provided including an emitter configured to emit an electron beam, an emitter focusing electrode, an extraction electrode, and a downstream focusing electrode. The emitter focusing electrode is disposed proximate to the emitter and outward of the emitter in an axial direction. The extraction electrode is disposed downstream of the emitter and the emitter focusing electrode. The extraction electrode has a negative bias voltage setting at which the extraction electrode has a negative bias voltage with respect to the emitter. The downstream focusing electrode is disposed downstream of the extraction electrode, and has a positive bias voltage with respect to the emitter. When the extraction electrode is at the negative bias voltage setting, the electron beam is emitted from an emission area that is smaller than a maximum emission area from which electrons may be emitted.
Abstract:
An X-ray tube assembly is provided including an emitter configured to emit an electron beam, an emitter focusing electrode, an extraction electrode, and a downstream focusing electrode. The emitter focusing electrode is disposed proximate to the emitter and outward of the emitter in an axial direction. The extraction electrode is disposed downstream of the emitter and the emitter focusing electrode. The extraction electrode has a negative bias voltage setting at which the extraction electrode has a negative bias voltage with respect to the emitter. The downstream focusing electrode is disposed downstream of the extraction electrode, and has a positive bias voltage with respect to the emitter. When the extraction electrode is at the negative bias voltage setting, the electron beam is emitted from an emission area that is smaller than a maximum emission area from which electrons may be emitted.
Abstract:
In accordance with one aspect of the present system, a dual energy X-ray imaging system includes a communication module configured to receive a pre-shot image from a detection circuitry and receive one or more pre-shot parameters from a source controller of the dual energy X-ray imaging system. The dual energy X-ray imaging system further includes an analysis module configured to determine one or more image characteristics of the pre-shot image. The dual energy X-ray imaging system further includes a determination module configured to calculate a first and a second set of main-shot parameters based on the one or more pre-shot parameters and the one or more image characteristics of the pre-shot image. The determination module is further configured to send the one or more main-shot parameters to the source controller of the dual energy X-ray imaging system.