Abstract:
An additive manufacturing system includes a laser device, a first scanning device, and an optical system. The laser device is configured to generate a laser beam, and the first scanning device is configured to selectively direct the laser beam across a powder bed. The laser beam generates a melt pool in the powder bed. The optical system includes an optical detector configured to detect electromagnetic radiation generated by the melt pool, and a second scanning device configured to direct electromagnetic radiation generated by the melt pool to the optical detector.
Abstract:
A method of monitoring a surface temperature of a hot gas path component includes directing an excitation beam having an excitation wavelength at a layer of a sensor material composition deposited on a hot gas path component to induce a fluorescent radiation. The method includes measuring fluorescent radiation emitted by the sensor material composition. The fluorescent radiation includes at least a first intensity at a first wavelength and a second intensity at a second wavelength. The surface temperature of the hot gas path component is determined based on a ratio of the first intensity at the first wavelength and the second intensity at the second wavelength of the fluorescent radiation emitted by the sensor material composition.
Abstract:
An additive manufacturing system includes a laser device, a first scanning device, and an optical system. The laser device is configured to generate a laser beam, and the first scanning device is configured to selectively direct the laser beam across a powder bed. The laser beam generates a melt pool in the powder bed. The optical system includes an optical detector configured to detect electromagnetic radiation generated by the melt pool, and a second scanning device configured to direct electromagnetic radiation generated by the melt pool to the optical detector.
Abstract:
An additive manufacturing system includes a surface holding a particulate and a focused energy source configured to generate at least one beam that moves along the surface to heat the particulate to a melting point creating a melt path. A camera is configured to generate an image of the surface as the at least one beam moves along the surface. The camera has a field of view and is positioned in relation to the surface such that the field of view encompasses a portion of the melt path defining a plurality of rasters. The camera generates a time exposure image of at least the portion of the melt path defining the plurality of rasters.
Abstract:
A method that includes additively manufacturing with an additive manufacturing (AM) system a sub-component that has a locator element. Using a control system of the AM system for positioning a first location of the locator element. Selectively placing a portion of another sub-component adjacent to the locator element, based on the positioning. Then attaching the second sub-component to the first sub-component in a region, wherein the region is based on the positioning knowledge from the control system so as to make a component. A component that comprises a first sub-component that has an AM locator element; and a second sub-component attached to the first sub-component, wherein the locator element is attached to the second sub-component within the same additive manufacturing build chamber as the first sub-component.
Abstract:
A method of monitoring a surface temperature of an environmental barrier coating (EBC) of a hot gas component includes directing an excitation beam having a first wavelength at a layer of a temperature indicator formed on the hot gas component. The method also includes measuring a fluorescent radiation emitted by the temperature indicator. The fluorescent radiation has a second wavelength and an intensity. In addition, the method includes determining a surface temperature of the EBC based on the intensity of the second wavelength of the fluorescent radiation.