Abstract:
An electro-optic device includes a first electrode electrically connecting with power supply circuitry. A second electrode is spaced from the first electrode and electrically connecting with the power supply circuitry. An electro-optic medium is disposed between the first electrode and the second electrode. At least one third electrode is disposed between the first electrode and the second electrode and electrically connecting with one of the first electrode and the second electrode via switching circuitry. The switching circuitry is operable to control an electrical current through the first electrode, the electro-optic medium, and the second electrode.
Abstract:
An electro-optic assembly includes a first substrate and a second substrate that is disposed in a substantially parallel spaced apart relationship with the first substrate. A first conductive layer is disposed on the first substrate, and a second conductive layer is disposed on the second substrate. A cathodic electro-optic film is in contact with the second conductive layer and includes a cathodic species. An anodic electro-optic film is in contact with the first conductive layer. The anodic electro-optic film includes a plurality of anodic species mixed at a molar ratio that is configured to generally maintain an a* value and a b* value of the electro-optic assembly both staying between −8 and 8 between a high-end transmission state and a fully darkened state caused by an applied voltage range. An electrolyte medium is disposed between the cathodic and anodic electro-optic films.
Abstract:
An electro-optic element having enhanced durability by the addition of an additive. The additive may enhance the durability of the electro-optic element by reducing or eliminating the effects of water on species with the electro-optic element, such as the electrolyte. Specifically, the additive may operate to reduce or eliminate the formation and/or accumulation of hydrogen fluoride within the electro-optic element by interaction of the electrolyte with water or alcohol molecules. In some embodiments, the additive may be an organosilicon species, such as (3-cyanopropyl) dimethylfluorosilane.
Abstract:
An electrochromic device and an electrode assembly for forming an electrochromic device includes a substrate, a conductive layer disposed over the substrate, and a resistive layer disposed over the conductive layer. The resistive layer includes conductive particles disposed in a polymer binder. The conductive particles include at least one doped metal oxide.
Abstract:
An electro-optic element includes a first electroactive compartment including an electroactive film having a first electroactive component and a second electroactive compartment including an electroactive solution or gel having a second electroactive component. An ion selective material is disposed between the first and second electroactive compartments and is configured to inhibit diffusion of the second electroactive component in an activated state from the second electroactive compartment to the first electroactive compartment. At least one of the first and second electroactive components is electrochromic such that the electro-optic element is configured to reversibly attenuate transmittance of light having a wavelength within a predetermined wavelength range when an electrical potential is applied to the electro-optic element.
Abstract:
The invention relates to an electrochromic device and uses thereof, wherein the electrochromic device includes an electrochromic compound with reduced intermolecular interactions resulting in uncontrolled color changes represented by Formula (I):
Abstract:
An emissive display system includes an electro-optic device having a first substantially transparent substrate. A second substantially transparent substrate is spaced apart from the first substrate to define a cavity therebetween. An electro-optic medium is disposed within the cavity and is variably transmissive such that the electro-optic device is operable between substantially clear and darkened states, and includes at least one solvent, at least one anodic material, and at least one cathodic material. One or more spacing members are deposited on one of the first substrate and the second substrate and are configured to maintain a cell spacing between the first and second substrates. The one or more spacing members at least substantially dissolve upon association with the electro-optic medium. A substantially transparent light emitting display is operably coupled to the electro-optic device, which is in the darkened state when the light emitting display is emitting light.
Abstract:
An emissive display system includes an electro-optic device having a first substantially transparent substrate including first and second surfaces disposed on opposite sides thereof. At least one of the first and second surfaces includes a first electrically conductive layer. A second substantially transparent substrate includes third and fourth surfaces disposed on opposite sides thereof. At least one of the third and fourth surfaces includes a second electrically conductive layer. A primary seal disposed between the first and second substrates. The seal and the first and second substrates define a cavity therebetween. An electro-optic medium is disposed in the cavity and is variably transmissive such that the electro-optic device is operable between substantially clear and darkened states. A substantially transparent light emitting display is disposed adjacent to the electro-optic device, which is converted to the darkened state when the light emitting display is emitting light.
Abstract:
An electrochromic device including a first substantially transparent substrate having an electrically conductive material associated therewith; a second substrate having an electrically conductive material associated therewith; and an electrochromic medium contained within a chamber positioned between the first and second substrates which includes: at least one solvent; at least one anodic electroactive material; at least one cathodic electroactive material; wherein at least one of the anodic and cathodic electroactive materials is electrochromic; and a creep resistant crosslinked polyelectrolyte gel matrix.
Abstract:
An electrochromic device including a first substantially transparent substrate having an electrically conductive material associated therewith; a second substrate having an electrically conductive material associated therewith; and an electrochromic medium contained within a chamber positioned between the first and second substrates which includes: at least one solvent; at least one anodic electroactive material; at least one cathodic electroactive material; wherein at least one of the anodic and cathodic electroactive materials is electrochromic; and a creep resistant crosslinked polyelectrolyte gel matrix.