Abstract:
An augmented reality based interactive troubleshooting and diagnostic system and related operating methods are presented here, including a diagnostic communication method for a vehicle having an onboard diagnostics subsystem. An exemplary embodiment of the method uses a mobile user device to obtain self-diagnostic information generated by the onboard diagnostics subsystem. The method continues by sending a query to a solution database system, wherein the query includes the obtained self-diagnostic information and vehicle configuration data descriptive of the vehicle. The mobile user device receives solution data provided by the solution database system in response to the query. The solution data addresses at least one topic associated with the obtained self-diagnostic information. The method continues by operating the camera and the display element in response to the received solution data to perform an augmented reality procedure associated with the at least one topic.
Abstract:
Methods and systems are provided for providing guidance when reversing a vehicle towing a trailer. In one embodiment, a method includes: A method for providing guidance when reversing a vehicle towing a trailer, comprising: receiving, from a camera of the trailer, image data associated with an environment of the vehicle; determining, by a processor, that the camera of the trailer is at least one of partially and fully underwater; in response to the determining, determining, by the processor, at least one of underwater image data and underwater guideline data based on a correction factor associated with the water and the image data; and generating, by the processor, display data based on the at least one of underwater image data and underwater guidelines data.
Abstract:
Systems for detecting movement of a trailer having a rearward facing camera and linked to a tow vehicle. The systems include taking a first image and a second image with the camera and comparing the images. A first amount of trailer movement is determined between the second image and the first image. The systems may also take additional images and determine a second amount of trailer movement occurring between the additional images. Tracking the first amount and the second amount of trailer movement determines an amount of trailer sway. The determined trailer sway may be compared to a maximum allowable sway and, if the movement is greater than the maximum allowable sway, mitigating sway of the trailer with the tow vehicle.
Abstract:
Methods and apparatus are provided for performing an assisted driving trailer reversing operation including a camera operative to capture an image, an interactive user interface operative to display a graphical user interface and to receive a user input, a processor operative to generate the graphical user interface in response to the user input, the user input being indicative of a trailer destination, to generate a left maneuverability margin and a right maneuverability margin in response to a trailer dimension and a hitch angle, and a projected trailer path in response to the trailer destination, wherein the graphical user interface includes the image and a plurality of graphics overlaid on the image indicative of the left maneuverability margin, the right maneuverability margin, the projected trailer path and the trailer destination, and a vehicle controller operative to perform a trailer reversing operation in response to the control signal.
Abstract:
Methods and apparatus are provided for performing an assisted driving trailer reversing operation including a camera operative to capture an image, an interactive user interface operative to display a graphical user interface and to receive a user input, a processor operative to generate the graphical user interface in response to the user input, the user input being indicative of a trailer destination, to generate a left maneuverability margin and a right maneuverability margin in response to a trailer dimension and a hitch angle, and a projected trailer path in response to the trailer destination, wherein the graphical user interface includes the image and a plurality of graphics overlaid on the image indicative of the left maneuverability margin, the right maneuverability margin, the projected trailer path and the trailer destination, and a vehicle controller operative to perform a trailer reversing operation in response to the control signal.
Abstract:
An automotive vehicle includes at least one actuator configured to control vehicle steering, at least one sensor configured to detect a profile of a driving surface proximate the vehicle, and at least one controller in communication with the actuator and the sensor. The controller is configured to identify a plurality of potential paths within a driveable lane, determine at least one road profile parameter for each respective potential path, identify a desired path based on a comparison of the respective road profile parameters for the plurality of potential paths, and control the actuator to steer the vehicle according to the desired path.
Abstract:
A vehicle, system and method for steering a trailer attached to a vehicle via a hitch along a selected path. A display of the vehicle shows a view behind the trailer. A processor projects a predicted path of the trailer and an instantaneous path of the trailer onto the display. The predicted path is affected by a steering angle at the vehicle and a hitch angle and the instantaneous path is affected by the hitch angle. A steering system is used to change the steering angle at the vehicle to adjust the predicted path, wherein an effect of the predicted path on the instantaneous path brings the instantaneous path of the trailer into alignment with the selected path.
Abstract:
Methods and systems are provided for transmitting video data from a vehicle. In one exemplary embodiment, a vehicle processor receives a video transmission command that has been generated in response to a user selection of a video transmission input device, and the vehicle processor transmits video data captured by one or more vehicle cameras in response to the received video transmission command, wherein transmission of video data is at least partly over a telecommunications network to a remote server.