Abstract:
A method and system for localizing a vehicle in a digital map includes generating GPS coordinates of the vehicle on the traveled road and retrieving from a database a digital map of a region traveled by the vehicle based on the location of the GPS coordinates. The digital map includes a geographic mapping of a traveled road and registered roadside objects. The registered roadside objects are positionally identified in the digital map by longitudinal and lateral coordinates. Roadside objects in the region traveled are sensed by the vehicle. The sensed roadside objects are identified on the digital map. A vehicle position on the traveled road is determined utilizing coordinates of the sensed roadside objects identified in the digital map. The position of the vehicle is localized in the road as a function of the GPS coordinates and the determined vehicle position utilizing the coordinates of the sensed roadside objects.
Abstract:
A method includes obtaining information about a lead vehicle. The lead vehicle is traveling directly ahead of the host vehicle and the information includes velocity of the lead vehicle and a gap g between the host vehicle and the lead vehicle. Based on detecting a change in the velocity of the lead vehicle in the information, a corresponding desired acceleration is computed for the host vehicle using perceived acceleration of the lead vehicle to maintain the gap g within a specified range of gap values. The perceived acceleration of the lead vehicle is based on the change in the velocity indicated by the information. Based on a check of parameters involved in the computing the corresponding desired acceleration, a modified desired acceleration is computed for the host vehicle using a lag for the lead vehicle that results in an intended acceleration of the lead vehicle differing from the perceived acceleration.
Abstract:
The present application generally relates to a method and apparatus for driving automation control of a motor vehicle. In particular, the system is operative to determine a vehicle maneuver, such as a lane change, and provide a first kinesthetic cue to a supervisory driver or vehicle occupant indicating the start of a vehicle maneuver. The system and method are then operative to complete the vehicle maneuver and provide a second kinesthetic cue indicating the completion of the vehicle maneuver.
Abstract:
The present application generally relates to a method and apparatus for lane changes performed by an assisted driving control system in a motor vehicle. In particular, the system is operative to determine a requirement for a lane change, to determine a first headway between a host vehicle and a lead vehicle and a second headway between the host vehicle and an adjacent vehicle occupying the desired lane. The velocity of the host vehicle is adjusted in response to the first headway and the second headway and the lane change is initiated in response to the second headway exceeding an adequate distance.
Abstract:
An automotive vehicle includes at least one actuator configured to control vehicle steering, shifting, acceleration, or braking, at least one sensor configured to provide signals indicative of road geometry in the vicinity of the vehicle, and a controller in communication with the sensor and the actuator. The controller is configured to selectively control the actuator in an autonomous driving mode based on signals from the sensor. The controller is configured to automatically determine a first time parameter based on a distance to a merge location between a current driving lane of the vehicle and a target lane adjacent the current driving lane in response to signals from the sensor, to automatically determine a second time parameter based on a calculated merge completion time, and to automatically discontinue autonomous control of the actuator based on a difference between the first time parameter and the second time parameter.
Abstract:
An automotive vehicle includes at least one actuator configured to control vehicle steering, shifting, acceleration, or braking, at least one sensor configured to provide signals indicative of road geometry in the vicinity of the vehicle, and a controller in communication with the sensor and the actuator. The controller is configured to selectively control the actuator in an autonomous driving mode based on signals from the sensor. The controller is configured to automatically determine a first time parameter based on a distance to a merge location between a current driving lane of the vehicle and a target lane adjacent the current driving lane in response to signals from the sensor, to automatically determine a second time parameter based on a calculated merge completion time, and to automatically discontinue autonomous control of the actuator based on a difference between the first time parameter and the second time parameter.
Abstract:
A method is disclosed for improved target grouping of sensor measurements in an object detection system. The method uses road curvature information to improve grouping accuracy by better predicting a new location of a known target object and matching it to sensor measurements. Additional target attributes are also used for improved grouping accuracy, where the attributes includes range rate, target cross-section and others. Distance compression is also employed for improved grouping accuracy, where range is compressed in a log scale calculation in order to diminish errors in measurement of distant objects. Grid-based techniques include the use of hash tables and a flood fill algorithm for improved computational performance of target object identification, where the number of computations can be reduced by an order of magnitude.
Abstract:
A method and system for controlling a position of a vehicle relative to other vehicles on a road is provided. The method includes controlling a position of a host vehicle travelling in a lane of a road using an automated driving system and monitoring positions of one or more side vehicles located on either side of the host vehicle and traveling in adjacent lanes. The method further includes detecting a condition in which the host vehicle is or will be positioned in a blind spot of a side vehicle disposed on in an adjacent lane and adjusting the position of the host vehicle in response to the condition using the automated driving system such that the amount of time the host vehicle is or will be positioned in the blind spot of the side vehicle is reduced.