Abstract:
The present disclosure involves a method of simulating a pulse generator on a portable electronic device. A graphical user interface is provided via a touch-sensitive screen of the portable electronic device. The graphical user interface is configured to facilitate interactive user engagements with the portable electronic device. A pulse generator simulator is launched on the portable electronic device in response to a request from the user. The pulse generator simulator provides a virtual pulse generator that duplicates a plurality of functionalities and features of an actual pulse generator. The virtual pulse generator is programmed based on user input received via the graphical user interface. One or more statuses of the virtual pulse generator are then displayed via the graphical user interface.
Abstract:
A model of an implantable lead is provided via a graphical user interface. The implantable lead is configured to deliver electrical stimulation to a patient via a plurality of electrodes located on the implantable lead. The graphical user interface also provides a plurality of predefined electrode activation patterns that include a coarse pattern and a refined pattern. The coarse pattern corresponds to a first group of electrodes located in a first region of the implantable lead. The refined pattern corresponds to a second group of electrodes located in a second region of the implantable lead. The second region is smaller than, and is a subsection of, the first region. A coarse testing process is performed by selectively activating the first group of electrodes belonging to the coarse pattern. Thereafter, a refined testing process is performed by selectively activating the second group of electrodes belonging to the refined pattern.
Abstract:
A computer-assisted stimulation programming of an implantable medical device is performed. A perception threshold is determined for a plurality of contacts on a lead configured to be implanted inside a patient. The perception threshold is determined by automatically performing a first sweep of the plurality of contacts and automatically performing a second sweep of a stimulation parameter. A paresthesia coverage provided by the plurality of contacts is determined by automatically performing a third sweep of the plurality of contacts and automatically performing a fourth sweep of the stimulation parameter. The fourth sweep is performed based on the determined perception thresholds. The first sweep, the second sweep, the third sweep, and the fourth sweep are performed without needing a manual input from a human user. A subset of the contacts corresponding to the paresthesia coverage is selected. In response to user input, stimulation programming is performed using the subset of contacts.
Abstract:
A stimulation system, such as a spinal cord stimulation (SCS) system, having a programmer for establishing a program to treat a patient. The programmer uses a discretized, interrupted, and safe spatial electrode migration process for establishing the stimulation program.
Abstract:
The present disclosure involves a method of generating different stimulation waveforms as a part of sacral nerve stimulation therapy. A first stimulation waveform having a first stimulation waveform characteristic is generated. The first stimulation waveform is delivered to a first body part of a patient at least in part via a first channel. A second stimulation waveform having a second stimulation waveform characteristic is generated. The second stimulation waveform characteristic is different from the first stimulation waveform characteristic. The second stimulation waveform is delivered to a second body part of the patient at least in part via a second channel that is separate and independent from the first channel. The first body part and second body part correspond to different organs or different types of nerves.
Abstract:
The present disclosure involves a method of measuring a physiological feedback from a patient in response to electrical stimulation. A stimulation parameter of a sacral nerve stimulation therapy is ramped up. The sacral nerve stimulation therapy includes electrical pulses generated by a pulse generator based on programming instructions received from an electronic programmer. The electrical pulses are delivered to a patient via a stimulation lead that is implanted in the patient. Via an anal electrode device that is at least partially inserted inside an anal canal of the patient, a compound motor action potential (CMAP) is measured from an anal sphincter of the patient while the stimulation parameter of the sacral nerve stimulation therapy is being ramped up. A stimulation threshold is determined based on the measured CMAP.
Abstract:
In a method for programming an implantable device, an input is received at a user interface on a tablet-style clinician programmer. A first display signal is generated on the clinician programmer that updates content on a first display based on the received user input. The first display has a first size. A second display signal is generated for transmission to a secondary unit having a second display separate from the clinician programmer. The second display has a second size larger than the first size. The generating of the second display signal includes enhancing the content of the second display signal to provide a clear image on the second size display. The second display signal is transmitted from the clinician programmer to the second display.
Abstract:
A method of displaying pain or stimulation experienced by a patient includes providing a graphical user interface configured to receive an input from a user and display a visual output to the user. A first map and a second map are concurrently displayed via the graphical user interface. The first map and the second map are each a pain map or a stimulation map. The pain map represents a body area of the patient experiencing pain. The stimulation map represents a body area of the patient experiencing electrical stimulation. A virtual control mechanism is displayed via the graphical user interface. Through the graphical user interface, an engagement of the virtual control mechanism is detected. In response to the engagement of the virtual control mechanism, respective visual emphases of the first map and the second map are simultaneously adjusted.
Abstract:
The present disclosure involves an electronic device for visualizing a sensation experienced by a patient. The electronic device includes a touchscreen display configured to receive a tactile input from a user and display a visual output. The electronic device includes a memory storage component configured to store programming code. The electronic device includes a computer processor configured to execute the programming code to perform the following tasks: generating, in response to the tactile input from the user, a three-dimensional (3D) sensation map that represents the sensation experienced by the patient; deriving a two-dimensional (2D) sensation map based on the 3D sensation map, wherein the 2D sensation map contains substantially less data than the 3D sensation map; and sending the 2D sensation map over a network to facilitate a reconstruction of the 3D sensation map using the 2D sensation map.
Abstract:
Impedance information of an implantable medical device is displayed. One or more impedance values are received over a period of time for a plurality of channels. The channels may each include an electrode contact on an implantable lead. A graph is displayed that illustrates a variation of the impedance values over at least a portion of the period of time for one or more of the channels. A visual landscape that is representative of the impedance values for the plurality of channels is also displayed.