Abstract:
An island-based network flow processor (IB-NFP) integrated circuit includes islands organized in rows. A configurable mesh event bus extends through the islands and is configured to form a local event ring. The configurable mesh event bus is configured with configuration information received via a configurable mesh control bus. The local event ring provides a communication path along which an event packet is communicated to each rectangular island along the local event ring. The local event ring involves event ring circuits and event ring segments. Upon each transition of a clock signal, an event packet moves through the ring from event ring segment to event ring segment. Event information and not packet data travels through the ring. The local event ring functions as a source-release ring in that only the event ring circuit that inserted the event packet onto the ring can delete the event packet from the ring.
Abstract:
A reconfigurable, scalable and flexible island-based network flow processor integrated circuit architecture includes a plurality of rectangular islands of identical shape and size. The islands are disposed in rows, and a configurable mesh command/push/pull data bus extends through all the islands. The integrated circuit includes first SerDes I/O blocks, an ingress MAC island that converts incoming symbols into packets, an ingress NBI island that analyzes packets and generates ingress packet descriptors, a microengine (ME) island that receives ingress packet descriptors and headers from the ingress NBI and analyzes the headers, a memory unit (MU) island that receives payloads from the ingress NBI and performs lookup operations and stores payloads, an egress NBI island that receives the header portions and the payload portions and egress descriptors and performs egress scheduling, and an egress MAC island that outputs packets to second SerDes I/O blocks.
Abstract translation:可重构,可扩展和灵活的基于岛的网络流处理器集成电路架构包括多个相同形状和大小的矩形岛。 岛排列成行,并且可配置的网格命令/推/拉数据总线延伸穿过所有岛。 该集成电路包括第一个SerDes I / O块,一个将输入符号转换成数据包的入口MAC岛,一个分析数据包并产生入口包描述符的入口NBI岛,一个微型引擎(ME)岛,接收入口数据包描述符和头 入口NBI并分析头部,存储单元(MU)岛,其从入口NBI接收有效载荷并执行查找操作并存储有效载荷;接收标题部分和有效载荷部分和出口描述符并执行出口调度的出口NBI岛, 以及向第二SerDes I / O块输出数据包的出口MAC岛。
Abstract:
A transactional memory (TM) receives a lookup command across a bus from a processor. The command includes a memory address, a starting bit position, and a mask size. In response to the command, the TM pulls an input value (IV). The memory address is used to read a word containing multiple result values (RVs) and multiple threshold values (TVs) from memory. A selecting circuit within the TM uses the starting bit position and mask size to select a portion of the IV. The portion of the IV is a lookup key value (LKV). The multiple TVs define multiple lookup key ranges. The TM determines which lookup key range includes the LKV. A RV is selected based upon the lookup key range determined to include the LKV. The lookup key range is determined by a lookup key range identifier circuit. The selected RV is selected by a result value selection circuit.
Abstract:
A hardware prefix reduction circuit includes a plurality of levels. Each level includes an input conductor, an output conductor, and a plurality of nodes. Each node includes a buffer and a storage device that stores a digital logic level. One node further includes an inverter. Another node further includes an AND gate with two non-inverting inputs. Another node further includes an AND gate with an inverting input and a non-inverting input. One bit of an input value, such as an internet protocol address, is communicated on the input conductor. The first level of the prefix reduction circuit includes two nodes and each subsequent level includes twice as many nodes as is included in the preceding level. A digital logic level is individually programmed into each storage device. The digital logic levels stored in the storage devices determines the prefix reduction algorithm implemented by the hardware prefix reduction circuit.
Abstract:
A transactional memory (TM) of an island-based network flow processor (IB-NFP) integrated circuit receives a Stats Add-and-Update (AU) command across a command mesh of a Command/Push/Pull (CPP) data bus from a processor. A memory unit of the TM stores a plurality of first values in a corresponding set of memory locations. A hardware engine of the TM receives the AU, performs a pull across other meshes of the CPP bus thereby obtaining a set of addresses, uses the pulled addresses to read the first values out of the memory unit, adds the same second value to each of the first values thereby generating a corresponding set of updated first values, and causes the set of updated first values to be written back into the plurality of memory locations. Even though multiple count values are updated, there is only one bus transaction value sent across the CPP bus command mesh.
Abstract:
A hardware trie structure includes a tree of internal node circuits and leaf node circuits. Each internal node is configured by a corresponding multi-bit node control value (NCV). Each leaf node can output a corresponding result value (RV). An input value (IV) supplied onto input leads of the trie causes signals to propagate through the trie such that one of the leaf nodes outputs one of the RVs onto output leads of the trie. In a transactional memory, a memory stores a set of NCVs and RVs. In response to a lookup command, the NCVs and RVs are read out of memory and are used to configure the trie. The IV of the lookup is supplied to the input leads, and the trie looks up an RV. A non-final RV initiates another lookup in a recursive fashion, whereas a final RV is returned as the result of the lookup command.
Abstract:
An island-based network flow processor (IB-NFP) integrated circuit includes islands organized in rows. A configurable mesh event bus extends through the islands and is configured to form one or more local event rings and a global event chain. The configurable mesh event bus is configured with configuration information received via a configurable mesh control bus. Each local event ring involves event ring circuits and event ring segments. In one example, an event packet being communicated along a local event ring reaches an event ring circuit. The event ring circuit examines the event packet and determines whether it meets a programmable criterion. If the event packet meets the criterion, then the event packet is inserted into the global event chain. The global event chain communicates the event packet to a global event manager that logs events and maintains statistics and other information.
Abstract:
A reconfigurable, scalable and flexible island-based network flow processor integrated circuit architecture includes a plurality of rectangular islands of identical shape and size. The islands are disposed in rows, and a configurable mesh command/push/pull data bus extends through all the islands. The integrated circuit includes first SerDes I/O blocks, an ingress MAC island that converts incoming symbols into packets, an ingress NBI island that analyzes packets and generates ingress packet descriptors, a microengine (ME) island that receives ingress packet descriptors and headers from the ingress NBI and analyzes the headers, a memory unit (MU) island that receives payloads from the ingress NBI and performs lookup operations and stores payloads, an egress NBI island that receives the header portions and the payload portions and egress descriptors and performs egress scheduling, and an egress MAC island that outputs packets to second SerDes I/O blocks.
Abstract translation:可重构,可扩展和灵活的基于岛的网络流处理器集成电路架构包括多个相同形状和大小的矩形岛。 岛排列成行,并且可配置的网格命令/推/拉数据总线延伸穿过所有岛。 该集成电路包括第一个SerDes I / O块,一个将输入符号转换成数据包的入口MAC岛,一个分析数据包并产生入口包描述符的入口NBI岛,一个微型引擎(ME)岛,接收入口数据包描述符和头 入口NBI并分析头部,存储单元(MU)岛,其从入口NBI接收有效载荷并执行查找操作并存储有效载荷;接收标题部分和有效载荷部分和出口描述符并执行出口调度的出口NBI岛, 以及向第二SerDes I / O块输出数据包的出口MAC岛。
Abstract:
An island-based integrated circuit includes a configurable mesh data bus. The data bus includes four meshes. Each mesh includes, for each island, a crossbar switch and radiating half links. The half links of adjacent islands align to form links between crossbar switches. A link is implemented as two distributed credit FIFOs. In one direction, a link portion involves a FIFO associated with an output port of a first island, a first chain of registers, and a second FIFO associated with an input port of a second island. When a transaction value passes through the FIFO and through the crossbar switch of the second island, an arbiter in the crossbar switch returns a taken signal. The taken signal passes back through a second chain of registers to a credit count circuit in the first island. The credit count circuit maintains a credit count value for the distributed credit FIFO.
Abstract:
An island-based network flow processor (IB-NFP) integrated circuit includes rectangular islands disposed in rows. A configurable mesh data bus includes a command mesh, a pull-id mesh, and two data meshes. The configurable mesh data bus extends through all the islands. For each mesh, each island includes a centrally located crossbar switch and eight half links. Two half links extend to ports on the top edge of the island, a half link extends to a port on a right edge of the island, two half links extend to ports on the bottom edge of the island, and a half link extents to a port on the left edge of the island. Two additional links extend to functional circuitry of the island. The configurable mesh data bus is configurable to form a command/push/pull data bus over which multiple transactions can occur simultaneously on different parts of the integrated circuit.