Abstract:
Embodiments of the invention to provide methods to provide on demand product placement to web based content. A method of in accordance with an embodiment of includes obtaining agreement between entities for placing a product in content. The products image or region of interest in the content is manipulated such that the product is emphasized; and content provider obtains payment for the content based activity of the content.
Abstract:
The user receives a digital radio transmission through a digital receiver and transmits a request to download selected content from this transmission to a content agent, an entity responsible for authorizing the authorized downloading of the digital content. If the content is not free of charge, the user also transmits sufficient information to allow for payment for the digital. The user then receives a transmission authorizing the downloading of the digital content from the content agent upon acceptance of the payment by the content agent. The user then downloads the content to a storage device which is coupled to the receiver.
Abstract:
A memory circuit (14) having features specifically adapted to permit the memory circuit (14) to serve as a video frame memory is disclosed. The memory circuit (14) contains a dynamic random access memory array (24) with buffers (18, 20) on input and output data ports (22) thereof to permit asynchronous read, write and refresh accesses to the memory array (24). The memory circuit (14) is accessed both serially and randomly. An address generator (28) contains an address buffer register (36) which stores a random access address and an address sequencer (40) which provides a stream of addresses to the memory array (24). An initial address for the stream of addresses is the random access address stored in the address buffer register (36).
Abstract:
A memory circuit (14) having features specifically adapted to permit the memory circuit (14) to serve as a video frame memory is disclosed. The memory circuit (14) contains a dynamic random access memory array (24) with buffers (18, 20) on input and output data ports (22) thereof to permit asynchronous read, write and refresh accesses to the memory array (24). The memory circuit (14) is accessed both serially and randomly. An address generator (28) contains an address buffer register (36) which stores a random access address and an address sequencer (40) which provides a stream of addresses to the memory array (24). An initial address for the stream of addresses is the random access address stored in the address buffer register (36).
Abstract:
A memory circuit (14) having features specifically adapted to permit the memory circuit (14) to serve as a video frame memory is disclosed. The memory circuit (14) contains a dynamic random access memory array (24) with buffers (18, 20) on input and output data ports (22) thereof to permit asynchronious read, write and refresh accesses to the memory array (24). The memory circuit (14) is accessed both serially and randomly. An address generator (28) contains an address buffer register (36) which stores a random access address and an address sequencer (40) which provides a stream of addresses memory array (24). An initial address for the stream of addresses is the random access address stored in the address buffer register (36).
Abstract:
A memory circuit (14) having features specifically adapted to permit the memory circuit (14) to serve as a video frame memory is disclosed. The memory circuit (14) contains a dynamic random access memory array (24) with buffers (18, 20) on input and output data ports (22) thereof to permit asynchronious read, write and refresh accesses to the memory array (24). The memory circuit (14) is accessed both serially and randomly. An address generator (28) contains an address buffer register (36), which stores a random access address and an address sequencer (40) which provides a stream of addresses to the memory array (24). An initial address for the stream of addresses is the random access address stored in the address buffer register (36).
Abstract:
A memory circuit (14) having features specifically adapted to permit the memory circuit (14) to serve as a video frame memory is disabled. The memory circuit (14) contains a dynamic random access memory array (24) with buffers (18, 20) on input and output data ports (22) thereof to permit asynchronious read, write and refresh accesses to the memory array (24). The memory circuit (14) is accessed both serially and randomly. An address generator (28) contains an address buffer register (36) which stores a random access address and an address sequencer (40) which provides a stream of addresses to the memory array (24). An initial address for the stream of addresses is the random access address stored in the address buffer register (36).
Abstract:
A memory circuit (14) having features specifically adapted to permit the memory circuit (14) to serve as a video frame memory is disclosed. The memory circuit (14) contains a dynamic random access memory array (24) with buffers (18, 20) on input and output data ports (22) thereof to permit asynchronious read, write and refresh accesses to the memory array (24). The memory circuit (14) is accessed both serially and randomly. An address generator (28) contains an address buffer register (36) which stores a random access address and an address sequencer (40) which provides a stream of addresses to the memory array (24). An initial address for the stream of addresses is the random access address stored in the address buffer register (36).
Abstract:
A memory circuit (14) having features specifically adapted to permit the memory circuit (14) to serve as a video frame memory. The memory circuit (14) contains a dynamic random access memory array (24) with buffers (18, 20) on input and output data ports (22) thereof to permit asynchronious read, write and refresh accesses to the memory array (24). The memory circuit (14) is accessed both serially and randomly. An address generator (28) contains an address buffer register (36) which stores a random access address and an address sequencer (40) which provides a stream of addresses to the memory array (24). An initial address for the stream of addresses is the random access address stored in the address buffer register (36).
Abstract:
Method and apparatus for converting voice characteristics of synthesized speech from a single applied source of synthesized speech in a manner obtaining modified voice characteristics pertaining to the apparent age and/or sex of the speaker. The apparatus is capable of altering the voice characteristics of synthesized speech to obtain modified voice sounds simulating child-like, teenage, adult, aged and sexual preference characteristics by control of vocal track parameters including pitch period, vocal tract model, and speech data rate. A source of synthesized speech having a predetermined pitch period, a predetermined vocal tract model, and a predetermined speech rate is separated into the respective speech parameters. The values of pitch, the speech data frame length, and the speech data rate are then varied in a preselected manner to modify the voice characteristics of the synthesized speech from the source thereof. Thereafter, the changed speech data parameters are re-combined into a modified synthesized speech data format having different voice characteristics with respect to the synthesized speech from the source, and an audio signal representative of human speech is generated from the modified synthesized speech data format from which audible synthesized speech may be generated.