Abstract:
In various examples, an apparatus includes an apparatus configured for implantation within a body of a patient. The apparatus, in some examples, includes a housing. At least one antenna extends from the housing, the antenna being flexible such that the antenna conforms to the body of the patient. In some examples, the apparatus includes at least three electrodes, wherein at least a first electrode is disposed on the antenna and at least a second electrode is disposed on the housing. The at least three electrodes are disposed in a non-linear configuration, allowing for differential processing of signals recorded by the at least three electrodes.
Abstract:
In various examples, an apparatus includes a gripping member including a body and a gripping portion attached to the body. The body includes a passage configured to accept a needle cannula within the passage. The gripping portion includes an open configuration in which the needle cannula is movable within the passage and a closed configuration in which the gripping portion engages the needle cannula to inhibit movement of the needle cannula within the passage. A coupling member is rotatably attached to the gripping member. The coupling member is configured to selectively couple with a dilator. The coupling member includes a bore fluidly coupled with the passage, the bore being configured to accept the needle cannula within the bore.
Abstract:
In various examples, an apparatus includes an apparatus configured for implantation within a body of a patient. The apparatus, in some examples, includes a housing. At least one antenna extends from the housing, the antenna being flexible such that the antenna conforms to the body of the patient. In some examples, the apparatus includes at least three electrodes, wherein at least a first electrode is disposed on the antenna and at least a second electrode is disposed on the housing. The at least three electrodes are disposed in a non-linear configuration, allowing for differential processing of signals recorded by the at least three electrodes.
Abstract:
An apparatus comprises an input configured to receive electrocardiogram (ECG) data detected by a patient monitoring device, the ECG data containing a physiologic signal and one or more segments of noise within the ECG data. A scrubber comprises a plurality of scrubbing modules each configured to process the ECG data and noise in a manner differing from other scrubbing modules. The scrubber is configured to filter the one or more noise segments that overlap with the physiologic signal, and consolidate the ECG data to eliminate the one or more noise segments that are non-overlapping with the physiologic signal. An output is configured to output scrubbed ECG data.
Abstract:
In various examples, an apparatus includes an apparatus configured for implantation within a body of a patient. The apparatus, in some examples, includes a housing. At least one antenna extends from the housing, the antenna being flexible such that the antenna conforms to the body of the patient. In some examples, the apparatus includes at least three electrodes, wherein at least a first electrode is disposed on the antenna and at least a second electrode is disposed on the housing. The at least three electrodes are disposed in a non-linear configuration, allowing for differential processing of signals recorded by the at least three electrodes.
Abstract:
In various examples, an apparatus includes a needle assembly including an outer cannula including a tubular sidewall disposed around a lumen. At least a portion of the sidewall includes an exterior including a polymeric material configured to inhibit skiving of an interior of a dilator with movement of the outer cannula within the dilator. An inner cannula is disposed within the lumen and is selectively slidable with respect to the outer cannula. A handle is disposed at a proximal portion of the needle assembly. The handle includes a first handle portion coupled to and movable with the outer cannula. A second handle portion is coupled to and movable with the inner cannula, wherein the first handle portion is selectively movable with respect to the second handle portion to extend a distal end of the inner cannula from within the lumen of the outer cannula.
Abstract:
In various examples, an apparatus includes a gripping member including a body and a gripping portion attached to the body. The body includes a passage configured to accept a needle cannula within the passage. The gripping portion includes an open configuration in which the needle cannula is movable within the passage and a closed configuration in which the gripping portion engages the needle cannula to inhibit movement of the needle cannula within the passage. A coupling member is rotatably attached to the gripping member. The coupling member is configured to selectively couple with a dilator. The coupling member includes a bore fluidly coupled with the passage, the bore being configured to accept the needle cannula within the bore.
Abstract:
An apparatus, system, and method directed to detecting a physiological signal during discrete time separated detection windows, deriving one or more respiratory disturbance indices from the physiological signal, detecting a respiratory disturbance state in response to the one or more respiratory disturbance indices deviating from a threshold value, interpolating the one or more respiratory disturbance indices between adjacent time separated detection windows, and declaring a respiratory disturbance episode based on the detected respiratory disturbance state during the detection windows and the interpolation between detection windows.