Abstract:
An apparatus comprises an input configured to receive electrocardiogram (ECG) data detected by a patient monitoring device, the ECG data containing a physiologic signal and one or more segments of noise within the ECG data. A scrubber comprises a plurality of scrubbing modules each configured to process the ECG data and noise in a manner differing from other scrubbing modules. The scrubber is configured to filter the one or more noise segments that overlap with the physiologic signal, and consolidate the ECG data to eliminate the one or more noise segments that are non-overlapping with the physiologic signal. An output is configured to output scrubbed ECG data.
Abstract:
An apparatus, system, and method directed to detecting a physiological signal during discrete time separated detection windows, deriving one or more respiratory disturbance indices from the physiological signal, detecting a respiratory disturbance state in response to the one or more respiratory disturbance indices deviating from a threshold value, interpolating the one or more respiratory disturbance indices between adjacent time separated detection windows, and declaring a respiratory disturbance episode based on the detected respiratory disturbance state during the detection windows and the interpolation between detection windows.
Abstract:
A medical device includes a housing configured for implantation within a body of a patient, and detection circuitry disposed in the housing and coupled to an electrode arrangement. The detection circuitry is configured to sense cardiac signals from the patient. A processor is coupled to the detection circuitry. The processor is configured to compare the cardiac signals to an initial detection threshold, automatically generate an additional detection threshold in response to a predetermined number of the cardiac signals meeting or exceeding the initial detection threshold or a previously generated detection threshold, count each occurrence of a cardiac signal meeting or exceeding each of the respective detection thresholds, and record cardiac signal data only for a cardiac signal that meets or exceeds the highest of the detection thresholds.
Abstract:
A medical device includes a housing configured for implantation within a body of a patient, and detection circuitry disposed in the housing and coupled to an electrode arrangement. The detection circuitry is configured to sense cardiac signals from the patient. A processor is coupled to the detection circuitry. The processor is configured to compare the cardiac signals to an initial detection threshold, automatically generate an additional detection threshold in response to a predetermined number of the cardiac signals meeting or exceeding the initial detection threshold or a previously generated detection threshold, count each occurrence of a cardiac signal meeting or exceeding each of the respective detection thresholds, and record cardiac signal data only for a cardiac signal that meets or exceeds the highest of the detection thresholds.
Abstract:
A medical device includes a housing and an electrode arrangement coupled to the housing and configured to sense an electrical physiologic signal from a patient. The device also includes detection circuitry coupled to the electrode arrangement and configured to obtain a cardiac signal component and a non-cardiac signal component from the physiological signal. A processor is coupled to the detection circuitry. The processor is configured to detect patient activity using at least the non-cardiac signal component and discriminate between voluntary and involuntary activity of the patient based on a comparison of temporally aligned cardiac and non-cardiac signal components.
Abstract:
A medical device includes a housing and an electrode arrangement coupled to the housing and configured to sense an electrical physiologic signal from a patient. The device also includes detection circuitry coupled to the electrode arrangement and configured to obtain a cardiac signal component and a non-cardiac signal component from the physiological signal. A processor is coupled to the detection circuitry. The processor is configured to detect patient activity using at least the non-cardiac signal component and discriminate between voluntary and involuntary activity of the patient based on a comparison of temporally aligned cardiac and non-cardiac signal components.
Abstract:
An apparatus, system, and method directed to detecting a physiological signal during discrete time separated detection windows, deriving one or more respiratory disturbance indices from the physiological signal, detecting a respiratory disturbance state in response to the one or more respiratory disturbance indices deviating from a threshold value, interpolating the one or more respiratory disturbance indices between adjacent time separated detection windows, and declaring a respiratory disturbance episode based on the detected respiratory disturbance state during the detection windows and the interpolation between detection windows.
Abstract:
An apparatus, system, and method directed to detecting a physiological signal during discrete time separated detection windows, deriving one or more respiratory disturbance indices from the physiological signal, detecting a respiratory disturbance state in response to the one or more respiratory disturbance indices deviating from a threshold value, interpolating the one or more respiratory disturbance indices between adjacent time separated detection windows, and declaring a respiratory disturbance episode based on the detected respiratory disturbance state during the detection windows and the interpolation between detection windows.
Abstract:
In various examples, an apparatus includes an apparatus configured for implantation within a body of a patient. The apparatus, in some examples, includes a housing. At least one antenna extends from the housing, the antenna being flexible such that the antenna conforms to the body of the patient. In some examples, the apparatus includes at least three electrodes, wherein at least a first electrode is disposed on the antenna and at least a second electrode is disposed on the housing. The at least three electrodes are disposed in a non-linear configuration, allowing for differential processing of signals recorded by the at least three electrodes.
Abstract:
In various examples, an apparatus includes an apparatus configured for implantation within a body of a patient. The apparatus, in some examples, includes a housing. At least one antenna extends from the housing, the antenna being flexible such that the antenna conforms to the body of the patient. In some examples, the apparatus includes at least three electrodes, wherein at least a first electrode is disposed on the antenna and at least a second electrode is disposed on the housing. The at least three electrodes are disposed in a non-linear configuration, allowing for differential processing of signals recorded by the at least three electrodes.