摘要:
A battery powered computing device has a channel configured as a single direct current balanced differential channel. A signal transmitter is connected to the channel. The signal transmitter is configured to apply clock edge modulated signals to the channel, where the clock edge modulated signals include direct current balancing control signals. A signal receiver is connected to the channel. The signal receiver is configured to recover the direct current balancing control signals.
摘要:
A communication system including a transmitter, a receiver, and a TMDS-like link, in which video data and auxiliary data (typically including timing data associated with other auxiliary data) are transmitted from the transmitter to the receiver, or in which video data are transmitted over the link from the transmitter to the receiver, and auxiliary data (typically including timing data associated with other auxiliary data) are transmitted from the receiver to the transmitter. In typical embodiments the auxiliary data include one or more streams of audio data. Other aspects are transmitters and receivers for use in such a system, methods for sending auxiliary data and video data over a TMDS-like link, methods for transmitting and recovering clocks for auxiliary data transmitted over such a link, methods for synchronizing auxiliary data transmitted over such a link with video data transmitted over such a link, and methods for generating clocks having frequency closely matching the rate at which the auxiliary data are transmitted over such a link.
摘要:
A method of transmitting data in a system including at least one data channel and a separate clock channel is disclosed. The method involves combining a clock signal to be transmitted on the clock channel with a data signal to generate a combined clock and data signal. In one embodiment, the data signal has been generated from data words using an encoding scheme that shifts an energy spectrum of the data signal away from an energy spectrum of the clock signal. In another embodiment, the clock signal has a plurality of pulses each having a front edge and a back edge, and the data signal is modulated onto the clock signal by moving at least one edge (i.e. front or back or both) of the plurality of pulses, thereby to create a combined clock and data signal.
摘要:
Logic gates are provided that include a diode-connected metal-oxide-semiconductor field-effect transistor (MOSFET) to produce a gate threshold voltage that differs from a mid-supply voltage level, while providing symmetry in the switching transients of the output logic signals. In one embodiment, the logic gate is a NAND gate. Use of a diode-connected n-type MOSFET in a ground path produces a threshold voltage level higher than the mid-supply voltage level. Use of a diode-connected p-type MOSFET in a supply voltage path produces a threshold voltage level lower than the mid-supply voltage level. In another embodiment, the logic gate is a NOR gate. Use of a diode-connected n-type MOSFET in a ground path produces a threshold voltage level higher than the mid-supply voltage level. Use of a diode-connected p-type MOSFET in a supply voltage path produces a threshold voltage level lower than the mid-supply voltage level.
摘要:
An output amplifier is provided for use in a bidirectional communications interface, for example, connecting a transmitter and a receiver to a transmission line. The output amplifier includes a differential amplifier pair connected to output circuitry. The differential amplifier pair receives differential data signal pairs from each of a transmission line and a transmitter. The output circuitry receives signals from the differential amplifier pair and, in response, forms single-ended output logic signals. The output amplifier suppresses electronic input noise throughput using an asymmetric transfer characteristic that offsets output signal logic levels with respect to input noise signal levels. The asymmetric transfer characteristic is produced by skewing a transfer characteristic of the differential amplifier pair using an asymmetrical transistor configuration at an output side of the differential amplifier pair. The output logic signals represent data received on the transmission line, and are provided to the receiver.
摘要:
An output amplifier is provided for use in a bidirectional communications interface, for example, connecting a transmitter and a receiver to a transmission line. The output amplifier includes a differential amplifier pair connected to output circuitry. The differential amplifier pair receives differential data signal pairs from each of a transmission line and a transmitter. The output circuitry receives signals from the differential amplifier pair and, in response, forms single-ended output logic signals. The output amplifier suppresses electronic input noise throughput using an asymmetric transfer characteristic that offsets output signal logic levels with respect to input noise signal levels. The asymmetric transfer characteristic is produced by skewing a transfer characteristic of the differential amplifier pair using an asymmetrical transistor configuration at an output side of the differential amplifier pair. The output logic signals represent data received on the transmission line, and are provided to the receiver.
摘要:
A bidirectional communications interface is provided that connects a transmitter and a receiver, or a transceiver, to a transmission line. Under an embodiment, the bidirectional interface generates positive and negative polarity data signals using two separate differential amplifiers that receive differential signal pairs from each side of a differential link to the transmission line and the transmitter. The bidirectional interface controls common mode rejection in each of the separate differential amplifiers using bias signals generated in response to an output common mode feedback voltage from each of the differential amplifiers. An output amplifier combines the positive and negative polarity data signals to form single-ended output logic signals. The output logic signals represent data received on the transmission line, and are provided to the receiver.
摘要:
An output amplifier is provided for use in a bidirectional communications interface, for example, connecting a transmitter and a receiver to a transmission line. The output amplifier includes a differential amplifier pair connected to output circuitry. The differential amplifier pair receives differential data signal pairs from each of a transmission line and a transmitter. The output circuitry receives signals from the differential amplifier pair and, in response, forms single-ended output logic signals. The output amplifier suppresses electronic input noise throughput using an asymmetric transfer characteristic that offsets output signal logic levels with respect to input noise signal levels. The asymmetric transfer characteristic is produced by skewing a transfer characteristic of the differential amplifier pair using an asymmetrical transistor configuration at an output side of the differential amplifier pair. The output logic signals represent data received on the transmission line, and are provided to the receiver.
摘要:
A bidirectional communications interface is provided that connects a transmitter and a receiver, or a transceiver, to a transmission line. Under an embodiment, the bidirectional interface generates positive and negative polarity data signals using two separate differential amplifiers that receive differential signal pairs from each side of a differential link to the transmission line and the transmitter. The bidirectional interface controls common mode rejection in each of the separate differential amplifiers using bias signals generated in response to an output common mode feedback voltage from each of the differential amplifiers. An output amplifier combines the positive and negative polarity data signals to form single-ended output logic signals. The output logic signals represent data received on the transmission line, and are provided to the receiver.
摘要:
A bidirectional communications interface is provided that connects a transmitter and a receiver, or a transceiver, to a transmission line. Under an embodiment, the bidirectional interface generates positive and negative polarity data signals using two separate differential amplifiers that receive differential signal pairs from each side of a differential link to the transmission line and the transmitter. The bidirectional interface controls common mode rejection in each of the separate differential amplifiers using bias signals generated in response to an output common mode feedback voltage from each of the differential amplifiers. An output amplifier combines the positive and negative polarity data signals to form single-ended output logic signals. The output logic signals represent data received on the transmission line, and are provided to the receiver.