Abstract:
An aircraft fuel deoxygenation system includes a boost pump, a contactor-separator, and a centrifuge-separator pump. The boost pump is adapted to receive fuel from a fuel source and inert gas from an inert gas source, and is configured to mix the fuel and inert gas and supply a fuel/gas mixture. The contactor-separator is coupled to receive the fuel/gas mixture and is configured to remove oxygen from the fuel and thereby generate and supply deoxygenated fuel with entrained purge gas and separated purge gas. The centrifuge-separator pump is coupled to receive the deoxygenated fuel with entrained purge gas and is configured to separate and remove the entrained purge gas from the deoxygenated fuel and supply the deoxygenated fuel and additional purge gas.
Abstract:
A system for driving an environmental control system (ECS) of a vehicle with ground-based electrical power may include a turbine engine on board the vehicle, coupled to the ECS to pneumatically drive the ECS, and an electric machine, on board the aircraft, mechanically coupled to the turbine engine, to drive the turbine engine. A control system such that the electric machine provides motoring assistance to the turbine engine, and that the motoring assistance is limited to match the available current from the ground-based electrical power.
Abstract:
Bladed Gas Turbine Engine (GTE) rotors including deposited transition rings are provided, as are embodiments of methods for manufacturing bladed GTE rotors. In one embodiment, the method includes providing an outer blade ring having an inner circumferential surface defining a central opening, and depositing a deposited transition ring on the inner circumferential surface of the outer blade ring. The outer blade ring can be a full bladed ring or an annular grouping of individually-fabricated bladed pieces. After deposition of the transition ring, a hub disk is inserted into the central opening such that the transition ring extends around an outer circumferential surface of the hub disk. The transition ring is then bonded to the outer circumferential surface of the hub disk utilizing, for example, a hot isostatic pressing technique to join the transition ring and the outer blade ring thereto.
Abstract:
A combustor for a turbine engine is provided. A first liner has a first surface and a second surface. A second liner forms a combustion chamber with the second side of the first liner, and the combustion chamber configured to receive an air-fuel mixture for combustion therein. The first liner defines a plurality of effusion cooling holes configured to form a film of cooling air on the second surface of the first liner. The plurality of effusion cooling holes includes a first effusion cooling hole extending from the first surface to the second surface and including an inlet portion extending from the first surface, a metering portion fluidly coupled to the inlet portion, and an outlet portion fluidly coupled to the metering portion and extending to the second surface. The inlet portion is larger than the metering portion.
Abstract:
An aircraft fuel deoxygenation and tank inerting system includes an inert gas source, a fuel deoxygenation system, and an air/fuel heat exchanger. The inert gas source is configured to supply inert gas having an oxygen concentration of less than 3%. The fuel deoxygenation system is adapted to receive fuel from a fuel source and the inert gas from the inert gas source. The fuel deoxygenation system is configured to remove oxygen from the fuel and thereby generate and supply deoxygenated fuel and oxygen-rich purge gas. The air/fuel heat exchanger is adapted to receive compressed air from a compressed air source and the deoxygenated fuel from the fuel deoxygenation system. The air/fuel heat exchanger is configured to transfer heat from the compressed air to the deoxygenated fuel, to thereby supply cooled compressed air and heated deoxygenated fuel.
Abstract:
An inlet particle separator system for a vehicle engine includes a separator assembly and a liquid injection system. The separator assembly defines an inlet flow path for receiving inlet air and includes a scavenge flow path and an engine flow path downstream of the inlet flow path. The separator assembly is configured to separate the inlet air into scavenge air and engine air such that the scavenge air is directed from the inlet flow path into the scavenge flow path and the engine air is directed from the inlet flow path into the engine flow path. The liquid injection system is coupled to the separator assembly and configured to introduce a diffused liquid into the inlet air flowing through the separator assembly.