Abstract:
A pressurization system includes a first compressor that receives a ram air, a fan air, or engine air; a first turbine that is on a common shaft with the first compressor and wherein the first turbine receives an engine air; a main heat exchanger downstream of the first compressor and the first turbine; an internal environment suitable for human occupants and downstream of the main heat exchanger; a second turbine downstream of the internal environment; the second turbine may be on the common shaft with the first compressor and first turbine; or a generator downstream of the second turbine; a motor downstream of the generator; and wherein the motor drives the first compressor.
Abstract:
A fibrous substrate for depositing carbon generated from pyrolysis of a hydrocarbon may include at least one roll defining a plurality of rolled deposition surfaces configured to receive carbon generated from the pyrolysis. The fibrous substrate may further include at least one spacer between and spacing at least one pair of opposed deposition surfaces of the plurality of rolled deposition surfaces. A system for generating hydrogen gas may include a pyrolysis reactor configured to generate the hydrogen gas from a hydrocarbon through pyrolysis. The system may further include the fibrous substrate. A method for forming the fibrous substrate may include positioning the at least one spacer on a surface of a fibrous mat, and rolling the fibrous mat into the at least one roll.
Abstract:
An aircraft fuel deoxygenation and tank inerting system includes an inert gas source, a fuel deoxygenation system, and an air/fuel heat exchanger. The inert gas source is configured to supply inert gas having an oxygen concentration of less than 3%. The fuel deoxygenation system is adapted to receive fuel from a fuel source and the inert gas from the inert gas source. The fuel deoxygenation system is configured to remove oxygen from the fuel and thereby generate and supply deoxygenated fuel and oxygen-rich purge gas. The air/fuel heat exchanger is adapted to receive compressed air from a compressed air source and the deoxygenated fuel from the fuel deoxygenation system. The air/fuel heat exchanger is configured to transfer heat from the compressed air to the deoxygenated fuel, to thereby supply cooled compressed air and heated deoxygenated fuel.
Abstract:
An in-line centrifuge-separator pump includes a shaft, a shroud, and a plurality of spaced-apart corrugated, and concentrically disposed separator structures. The shaft is adapted to receive a drive torque and is configured, upon receipt thereof, to rotate. The shroud is spaced apart from and is coupled to the shaft to be rotated thereby. The separator structures are at least partially disposed within the shroud and are coupled to both the shroud and the shaft to simultaneously rotate therewith. Each separator structure has a plurality of perforations formed therein.
Abstract:
An aircraft fuel deoxygenation system includes a boost pump, a contactor-separator, and a centrifuge-separator pump. The boost pump is adapted to receive fuel from a fuel source and inert gas from an inert gas source, and is configured to mix the fuel and inert gas and supply a fuel/gas mixture. The contactor-separator is coupled to receive the fuel/gas mixture and is configured to remove oxygen from the fuel and thereby generate and supply deoxygenated fuel with entrained purge gas and separated purge gas. The centrifuge-separator pump is coupled to receive the deoxygenated fuel with entrained purge gas and is configured to separate and remove the entrained purge gas from the deoxygenated fuel and supply the deoxygenated fuel and additional purge gas.
Abstract:
A node for a low loss passive optical hub is provided. The low loss passive optical hub includes a 1:N-split fiber and a plastic-optical fiber. The 1:N-split fiber has a fused-fractional end and N second-fractional ends. The 1:N-split fiber is formed from N sub-fibers. The N sub-fibers each have a first-fractional end and a second-fractional end. The N first-fractional ends are fused to form the fused-fractional end. The plastic-optical fiber has a first end and a second end. The first end of the plastic-optical fiber is optically coupled to the fused-fractional end of the 1:N-split fiber.
Abstract:
A cell structure is provided that is (i) capable of handling, on inner and outer surfaces, heat transfer requirements of heat exchangers and/or be a substrate for coatings for catalytic reactors, (ii) able to be easily combined and interconnected into a variety of shapes, and (iii) may be created in an additive manufacturing process. The provided cell structure may be replicated and interconnected with other cell structures to create lattice structures in a variety of shapes. Accordingly, the cell structure may be used to build a heat exchanger or catalytic reactor that has reduced weight compared to traditional architectures.
Abstract:
A cell structure is provided that is (i) capable of handling, on inner and outer surfaces, heat transfer requirements of heat exchangers and/or be a substrate for coatings for catalytic reactors, (ii) able to be easily combined and interconnected into a variety of shapes, and (iii) may be created in an additive manufacturing process. The provided cell structure may be replicated and interconnected with other cell structures to create lattice structures in a variety of shapes. Accordingly, the cell structure may be used to build a heat exchanger or catalytic reactor that has reduced weight compared to traditional architectures.
Abstract:
An in-line centrifuge-separator pump includes a shaft, a shroud, and a plurality of spaced-apart corrugated, and concentrically disposed separator structures. The shaft is adapted to receive a drive torque and is configured, upon receipt thereof, to rotate. The shroud is spaced apart from and is coupled to the shaft to be rotated thereby. The separator structures are at least partially disposed within the shroud and are coupled to both the shroud and the shaft to simultaneously rotate therewith. Each separator structure has a plurality of perforations formed therein.
Abstract:
An aircraft landing gear wheel-drive system includes a first wheel drive unit for driving a first landing gear wheel of the aircraft and a second wheel drive unit for driving a second landing gear wheel of the aircraft. The first wheel drive unit has a first range of torque to speed (T/S) ratios. The second wheel drive unit has a second range of T/S ratios. The first range of T/S ratios is greater than the second range of T/S ratios.