Abstract:
Methods of recovering iodine (I2) from a stream including iodine (I2) vapor and at least one of: an inert gas and water vapor can include contacting the stream with an alkaline solution to form an iodide salt, contacting the stream with an adsorbent to selectively adsorb water from the stream, contacting the stream with a concentrated acid to absorb the water vapor from the stream, desublimating or condensing the iodine (I2) vapor to form solid or liquid iodine (I2), or contacting the stream with a material to condense or de-sublimate the iodine (I2) vapor from the stream as the material at least one of: absorbs latent heat through a phase change of the material and absorbs sensible heat.
Abstract:
The present disclosure provides azeotrope or azeotrope-like compositions including trifluoroiodomethane (CF3I) and trifluoroacetyl chloride (CF3COCl), methods of forming same, and methods of separating, or breaking, the azeotrope or azeotrope-like compositions of trifluoroiodomethane (CF3I) and trifluoroacetyl chloride (CF3COCl).
Abstract:
Heterogeneous azeotrope or azeotrope-like compositions comprising trifluoroiodomethane (CF3I) and water which may include from about 47.7 wt. % to about 99.0 wt. % trifluoroiodomethane (CF3I) and from about 1.0 wt. % to about 52.3 wt. % water and having a boiling point between about 18.0° C. and about 19.0° C. at a pressure of between about 58.0 psia and about 60.0 psia. The azeotrope or azeotrope-like compositions may be used to separate impurities from trifluoroiodomethane (CF3I).
Abstract:
The present disclosure provides various manufacturing processes for the production of 2,3,3,3-tetrafluoropropene (HFO-1234yf or 1234yf). Such methods may allow for the improved yields, more economical processes, and waste reduction in the production of 1234yf and subsequent processes.
Abstract:
A process for the manufacture of halogenated olefins in semi-batch mode by dehydrohalogenation of halogenated alkanes in the presence of an aqueous base such as KOH which simultaneously neutralizes the resulting hydrogen halide. During the process, aqueous base is continuously added to the haloalkane which results in better yields, lower by-product formation and safer/more controllable operation.
Abstract:
The invention relates to a process to produce 244bb from 1233xf in multiple reaction zones whereby the 1233xf starting material is at least 95% converted to 244bb and by-product such as 245cb forms in amounts less than about 2%.
Abstract:
This invention relates to a process for the suppression of 3,3,3-trifluoropropyne during the manufacture of fluorocarbons, fluoroolefins, hydrochlorofluoroolefins. More particularly, this invention is directed to a process to suppress the formation of 3,3,3-trifluoropropyne during processes for the manufacture of HCFO-1233zd(E), HCFO-1233zd(Z), HFO-1234ze(E), and/or HFO-1234ze(Z).
Abstract:
The present invention relates in part to a container for stabilized chloropropenes, such as 1,1,2,3-tetrachloropropene, otherwise known to decompose and degrade, and to the resulting stabilized chloropropene, using a morpholine compound and/or a trialkyl phosphate compound as defined herein. Such stabilized chloropropenes are useful in the manufacture of hydrofluoroolefins such as 2,3,3,3-tetrafluoroprop-1-ene (1234yf).
Abstract:
The invention relates to a process to produce HCFC-244bb from HCFO-1233xf wherein, in one embodiment, co-feed species HFC-245cb is added to the reaction at a pressure of at least about 100 psig; and in another embodiment it is added to maintain a mole ratio of HFC-245cb to HCFO-1233xf of between about 0.005:1 to about 1:1. The HFC-245cb may be added as recycled by-product of the reaction and/or added as fresh feed. The HFC-245cb provides elevated pressures to the reaction thereby facilitating reactor operation, mixing and HCFC-244bb product removal. Other co-feed species are also disclosed.
Abstract:
The invention relates to a process to prepare tetrahalopropenes, such as 2-chloro-3,3,3-trifluoropropene (1233xf). The process comprises atomizing a feed material, such as 1,1,2,3-tetrachloropropene (1230xa) and the like, and mixing it with superheated HF to form a vaporized composition of feed material and HF with substantially instantaneous contact with a vapor phase fluorination catalyst. The invention extends catalyst life and forestalls catalyst deactivation.