Abstract:
Methods and systems are provided for guiding or otherwise assisting energy management of an aircraft en route to a runway. A method to optimize managing energy of an aircraft in a landing trajectory when deploying landing gear, the system including evaluating an energy state for the aircraft for a set of flight trajectories including a lateral and a vertical trajectory for a flight path in an approach phase to a runway; identifying at least one energy state for the aircraft based on a set of formulated computations based on an altitude and speed of a vertical aircraft profile on the flight path in the approach phase; and assessing in an envelope region a landing gear extension to manage the excess energy at a prediction location in the flight path; and deploy the landing gear responsive to an assessed change in the aircraft energy state in route to the runway.
Abstract:
Methods and systems are provided for guiding or otherwise assisting energy management of an aircraft radar vectoring en route to a runway. A method involves dynamically determining an updated predicted lateral trajectory for the radar vectoring when the current aircraft status fails to satisfy a trajectory execution criterion for a previously-predicted lateral trajectory by iteratively adjusting a runway interception point defining a segment aligned with the runway until arriving at the updated predicted lateral trajectory for which a stabilization criterion for the runway can be satisfied. The method determines a target value for an energy state parameter of the aircraft at a current location on the updated predicted lateral trajectory and provides indication of a recommended action to reduce a difference between a current value for the energy state parameter and the target value.
Abstract:
Systems and methods, and non-transitory computer readable mediums directed to generating an adaptive glide slope angle and allowing a pilot to interact with the generated glide slope angle are provided. The systems and methods, and non-transitory computer readable mediums retrieve, from a navigation database (NDB), a designated approach procedure for the aircraft, and identify a designated glide slope angle (D_GSA) based thereon. The systems and methods, and non-transitory computer readable mediums receive sensed actual weather data and sensed aircraft status data and generate an adaptive glide slope angle A_GSA based thereon. The systems and methods, and non-transitory computer readable mediums allow modification of and modify, or prevent modification of, the designated approach procedure with the A_GSA based on the determination of whether or not the A_GSA is compatible with the designated approach procedure.
Abstract:
A method for providing cost data for a flight is provided. The method (i) obtains cost target data for the flight, under anticipated conditions; (ii) obtains real-time aircraft performance parameters affecting the actual cost of the flight, using continuous monitoring during the flight, including at least aircraft speed modes, aircraft flight level changes, tactical interventions, weather impact, and descent timing deviations; (iii) determines an actual cost of the flight, based on the real-time aircraft performance parameters affecting the actual cost; (iv) identifies flight plan change options associated with a potential cost savings over the actual cost, wherein the flight plan change options comprise potential modifications to the flight plan to complete the flight; (v) presents the flight plan change options; and (vi) adapts operation of one or more avionics systems onboard the aircraft, based on one of the flight plan change options.
Abstract:
A method for providing cost data for a flight is provided. The method (i) obtains cost target data for the flight, under anticipated conditions; (ii) obtains real-time aircraft performance parameters affecting the actual cost of the flight, using continuous monitoring during the flight, including at least aircraft speed modes, aircraft flight level changes, tactical interventions, weather impact, and descent timing deviations; (iii) determines an actual cost of the flight, based on the real-time aircraft performance parameters affecting the actual cost; (iv) identifies flight plan change options associated with a potential cost savings over the actual cost, wherein the flight plan change options comprise potential modifications to the flight plan to complete the flight; (v) presents the flight plan change options; and (vi) adapts operation of one or more avionics systems onboard the aircraft, based on one of the flight plan change options.
Abstract:
Cockpit display systems and methods for generating navigation displays including landing diversion symbology are provided. In one embodiment, the cockpit display system includes a cockpit monitor and a controller coupled to the cockpit monitor. The controller is configured to assess the current feasibility of landing at one or more diversion airports in a range of an aircraft on which the cockpit display system is deployed. The controller is further configured to assign each diversion airport to one of a plurality of predetermined landing feasibility categories, and generate a horizontal navigation display on the cockpit monitor including symbology representative of the feasibility category assigned to one or more of the diversion airports.
Abstract:
A system and method provides situation awareness for a pilot to appropriately configure the aircraft as well as intercept the flight management system computed vertical profile in order to reduce fuel consumption, emission and better manage aircraft energy for safer operations. Markers are displayed on a vertical situation display suggesting a profile that the pilot may select involving aircraft configuration and actual flown trajectory versus the computed vertical profile, especially when aircraft is off the computed vertical profile.
Abstract:
Aircraft systems and methods are provided for assisting sequencing of aircraft by providing conditional estimated arrival times for short arrivals or early clearances. One method involves identifying a geographic location associated with a merge point for an approach to an airport associated with a flight plan for an aircraft, determining an alternative lateral trajectory for the aircraft from a second geographic location along a sequencing route between arrival and the merge point, determining a conditional estimated arrival time for the aircraft at the merge point based at least in part on the alternative lateral trajectory, and transmitting a message including the conditional estimated arrival time for the aircraft to an external computing system.
Abstract:
A system and methods for enhancing operator situational awareness are disclosed. For example, one method includes monitoring a plurality of radio transmissions associated with a plurality of vehicles in a first traffic flow pattern, monitoring a second traffic flow pattern in a vicinity of a vehicle of the plurality of vehicles, monitoring at least one weather value for a destination site for the plurality of vehicles, proposing a destination approach for the vehicle in response to the monitoring, evaluating an impact of the proposed destination approach on an existing travel path for the vehicle, and generating a second travel path for the vehicle in response to the evaluating.
Abstract:
A method in an aircraft for energy reduction is disclosed. The method includes: determining a starting point location, altitude and airspeed for a stable approach for landing at a diversion airport; and determining a vertical strategy for achieving the starting point altitude and airspeed by identifying a region of opportunity for adjusting the speed and altitude and identifying a plurality of energy reduction strategies for achieving the starting point altitude and airspeed while in the region of opportunity based on a speed mode during the stable approach. The method further comprises causing a graphic display to be displayed that lists for selection each of the plurality of identified strategies, detailed maneuver information for strategy implementation, and costs for implementing each identified strategy; and causing to be displayed, responsive to flight crew selection, a lateral view and vertical view of a proposed trajectory based on a selected identified strategy.