Abstract:
Encoding methods, decoding methods, encoding apparatuses, and decoding apparatuses are provided, for a video image with forward and backward reference blocks. One encoding method includes: determining an optimal integrated neighboring block for a current block based on a motion vector integration technology; determining, based a prediction direction of the optimal integrated neighboring block, a motion vector derivation mode that needs to be used by a decoder; correcting a motion vector of the current block based on the motion vector derivation mode, and determining a residual between a predicted value and an original value of the current block based on the corrected motion vector, thereby encoding the current block. According to the technical solutions, a more accurate predicted value is obtained by correcting the motion vector, and a smaller residual is generated.
Abstract:
A picture prediction method includes: determining two pixel samples in a current picture block, and determining a candidate motion information unit set corresponding to each of the two pixel samples; determining a merged motion information unit set i including two motion information units; and predicting a pixel value of the current picture block by using an atone motion model and the merged motion information unit set i.
Abstract:
Embodiments of the present application relate to a video image encoding method, a video image decoding method, an encoding device, and a decoding device. The method includes: determining a motion vector group of a current encoding block; determining prediction values of a first component set of a motion model initialization vector; determining values of the first component set according to the prediction values of the first component set; and encoding the values of the first component set, and transmitting encoded values of the first component set. According to the video image encoding method in the embodiments of the present application, a motion model initialization vector is determined according to a motion vector group; values of a motion model are determined according to the motion model initialization vector. In this way, a volume of data and a quantity of occupied bits in encoding and decoding transmission can be reduced.
Abstract:
A method and device for generating a predicted value of image that are mostly used to generate a predicted value of a current block during image encoding or decoding. The method includes: determining a searching scope, wherein multiple motion vectors are included in the searching scope; performing up-sampling interpolations on first reference blocks, corresponding to the motion vector in the searching scope, in a reference image of the current block by using a first filter to obtain up-sampled first reference blocks; by using the up-sampled first reference blocks, obtaining at least one candidate motion vector corresponding to the current block; performing up-sampling interpolations on second reference blocks, corresponding to the at least one candidate motion vector, in the reference image of the current block by using a second filter to obtain up-sampled second reference blocks; combining the up-sampled second reference blocks to obtain a predicted value of the current block.
Abstract:
An image processing method includes acquiring N pieces of motion information from N adjacent image blocks adjacent to a current image block, where the N adjacent image blocks are in a one-to-one correspondence with the N pieces of motion information, and the N pieces of motion information are in a one-to-one correspondence with the N reference image blocks, determining candidate motion information from the N pieces of motion information according to a preset rule, determining, in the reference image, a location range of a to-be-stored pixel, and storing all pixels in the location range, where the location range covers all pixels of a candidate reference image block, and reading the pixels in the location range, and performing encoding processing on the current image block according to the pixels in the location range.
Abstract:
A method, an apparatus and a system for a rapid motion search applied in template matching are disclosed. The method includes: selecting motion vectors of blocks related to a current block as candidate motion vectors of the current block; after the uniqueness of a series of the candidate motion vectors of the current block is maintained, calculating the cost function of the candidate motion vectors in a corresponding template area of a reference frame, and obtaining the motion vector of the best matching template from the candidate motion vectors of the current block. In the embodiments of the present invention, there is no need to determine a large search range and no need to determine the corresponding search path template, and it is only necessary to perform a search in a smaller range.
Abstract:
Image encoding and decoding methods and related devices are provided. An image encoding and decoding method includes: for a sub-image block obtained by partitioning an image block, determining at least two position parameters, in which the at least two position parameters include a first position parameter and a second position parameter, the first position parameter identifies whether the sub-image block is a rectangle or not a rectangle, and the second position parameter identifies endpoint information of the sub-image block; determining an encoding sequence of the first position parameter and the second position parameter according to a partition manner of the image block; and encoding the at least two position parameters according to the determined encoding sequence.
Abstract:
A method and device for generating a predicted value of image that are mostly used to generate a predicted value of a current block during image encoding or decoding. The method includes: determining a searching scope, wherein multiple motion vectors are included in the searching scope; performing up-sampling interpolations on first reference blocks, corresponding to the motion vector in the searching scope, in a reference image of the current block by using a first filter to obtain up-sampled first reference blocks; by using the up-sampled first reference blocks, obtaining at least one candidate motion vector corresponding to the current block; performing up-sampling interpolations on second reference blocks, corresponding to the at least one candidate motion vector, in the reference image of the current block by using a second filter to obtain up-sampled second reference blocks; combining the up-sampled second reference blocks to obtain a predicted value of the current block.
Abstract:
A picture prediction method and a related apparatus are disclosed. A picture prediction method includes: determining K1 pixel samples in a picture block x, and determining a candidate motion information unit set corresponding to each pixel sample in the K1 pixel samples, where the candidate motion information unit set corresponding to each pixel sample includes at least one candidate motion information unit; determining a merged motion information unit set i including K1 motion information units, where each motion information unit in the merged motion information unit set i is selected from at least a part of motion information units in candidate motion information unit sets corresponding to different pixel samples in the K1 pixel samples; and predicting a pixel value of the picture block x by using a non-translational motion model and the merged motion information unit set i.
Abstract:
A picture prediction method and a related apparatus are disclosed. A picture prediction method includes: determining K1 pixel samples in a picture block x, and determining a candidate motion information unit set corresponding to each pixel sample in the K1 pixel samples, where the candidate motion information unit set corresponding to each pixel sample includes at least one candidate motion information unit; determining a merged motion information unit set i including K1 motion information units, where each motion information unit in the merged motion information unit set i is selected from at least a part of motion information units in candidate motion information unit sets corresponding to different pixel samples in the K1 pixel samples; and predicting a pixel value of the picture block x by using a non-translational motion model and the merged motion information unit set i.