摘要:
A method of fabricating a semiconductor device includes forming a preliminary gate pattern on a semiconductor substrate. The preliminary gate pattern includes a gate oxide pattern, a conductive pattern, and a sacrificial insulating pattern. The method further includes forming spacers on opposite sidewalls of the preliminary gate pattern, forming an interlayer dielectric pattern to expose the sacrificial insulating pattern, removing the sacrificial insulating pattern to form an opening to expose the conductive pattern, transforming the conductive pattern into a metal silicide layer and forming a metal barrier pattern along an inner profile of the opening and a metal conductive pattern to fill the opening including the metal barrier pattern. The metal silicide layer and the metal conductive pattern constitute a gate electrode.
摘要:
Methods of forming metal silicide layers include a convection-based annealing step to convert a metal layer into a metal silicide layer. These methods may include forming a silicon layer on a substrate and forming a metal layer (e.g., nickel layer) in direct contact with the silicon layer. A step is then performed to convert at least a portion of the metal layer into a metal silicide layer. This conversion step is includes exposing the metal layer to an inert heat transferring gas (e.g., argon, nitrogen) in a convection or conduction apparatus.
摘要:
There is provided a method of forming a semiconductor device having stacked transistors. When forming a contact hole for connecting the stacked transistors to each other, ohmic layers on the bottom and the sidewall of the common contact hole are separately formed. As a result, the respective ohmic layers are optimally formed to meet requirements or conditions. Accordingly, the contact resistance of the common contact may be minimized so that it is possible to enhance the speed of the semiconductor device.
摘要:
A stacked semiconductor device comprises a lower transistor formed on a semiconductor substrate, a lower interlevel insulation film formed on the semiconductor substrate over the lower transistor, an upper transistor formed on the lower interlayer insulation film over the lower transistor, and an upper interlevel insulation film formed on the lower interlevel insulation film over the upper transistor. The stacked semiconductor device further comprises a contact plug connected between a drain or source region of the lower transistor and a source or drain region of the upper transistor, and an extension layer connected to a lateral face of the source or drain region of the upper transistor to enlarge an area of contact between the source or drain region of the upper transistor and a side of the contact plug.
摘要:
A method of forming a semiconductor device may include forming an interlayer insulating layer on a semiconductor substrate, and the interlayer insulating layer may have a contact hole therein exposing a portion of the semiconductor substrate. A single crystal semiconductor plug may be formed in the contact hole and on portions of the interlayer insulating layer adjacent the contact hole opposite the semiconductor substrate, and portions of the interlayer insulating layer opposite the semiconductor substrate may be free of the single crystal semiconductor plug. Portions of the single crystal semiconductor plug in the contact hole may be removed while maintaining portions of the single crystal semiconductor plug on portions of the interlayer insulating layer adjacent the contact hole as a single crystal semiconductor contact pattern. After removing portions of the single crystal semiconductor plug, a single crystal semiconductor layer may be formed on the interlayer insulating layer and on the single crystal semiconductor contact pattern. A second interlayer insulating layer may be formed on the single crystal semiconductor layer, and a common contact hole may be formed through the second interlayer insulating layer, through the single crystal semiconductor layer, and through the first interlayer insulating layer to expose a portion of semiconductor substrate. In addition, a conductive contact plug may be formed in the common contact hole in contact with the semiconductor substrate. Related devices are also discussed.
摘要:
There is provided a method of forming a semiconductor device having stacked transistors. When farming a contact hole for connecting the stacked transistors to each other, ohmic layers on the bottom and the sidewall of the common contact hole are separately formed. As a result, the respective ohmic layers are optimally formed to meet requirements or conditions. Accordingly, the contact resistance of the common contact may be minimized so that it is possible to enhance the speed of the semiconductor device.
摘要:
There is provided a method of forming a semiconductor device having stacked transistors. When forming a contact hole for connecting the stacked transistors to each other, ohmic layers on the bottom and the sidewall of the common contact hole are separately formed. As a result, the respective ohmic layers are optimally formed to meet requirements or conditions. Accordingly, the contact resistance of the common contact may be minimized so that it is possible to enhance the speed of the semiconductor device.
摘要:
A method of forming a semiconductor device may include forming an interlayer insulating layer on a semiconductor substrate, and the interlayer insulating layer may have a contact hole therein exposing a portion of the semiconductor substrate. A single crystal semiconductor plug may be formed in the contact hole and on portions of the interlayer insulating layer adjacent the contact hole opposite the semiconductor substrate, and portions of the interlayer insulating layer opposite the semiconductor substrate may be free of the single crystal semiconductor plug. Portions of the single crystal semiconductor plug in the contact hole may be removed while maintaining portions of the single crystal semiconductor plug on portions of the interlayer insulating layer adjacent the contact hole as a single crystal semiconductor contact pattern. After removing portions of the single crystal semiconductor plug, a single crystal semiconductor layer may be formed on the interlayer insulating layer and on the single crystal semiconductor contact pattern. A second interlayer insulating layer may be formed on the single crystal semiconductor layer, and a common contact hole may be formed through the second interlayer insulating layer, through the single crystal semiconductor layer, and through the first interlayer insulating layer to expose a portion of semiconductor substrate. In addition, a conductive contact plug may be formed in the common contact hole in contact with the semiconductor substrate. Related devices are also discussed.
摘要:
There is provided a method of forming a semiconductor device having stacked transistors. When forming a contact hole for connecting the stacked transistors to each other, ohmic layers on the bottom and the sidewall of the common contact hole are separately formed. As a result, the respective ohmic layers are optimally formed to meet requirements or conditions. Accordingly, the contact resistance of the common contact may be minimized so that it is possible to enhance the speed of the semiconductor device.
摘要:
A method of forming a silicide layer includes forming a metal layer on a substrate having a silicon region, the metal layer including nickel, annealing the substrate and the metal layer to form the silicide layer on the silicon region, the silicide layer including nickel, and cooling the substrate and the silicide layer at a temperature of about 100° C. to about 300° C. for at least one minute, the cooling occurring after the annealing.