Abstract:
An apparatus is disclosed that is used in an industrial process control and automation system that operates using an open platform data communication protocol. The apparatus includes a processor and a memory, and a communications interface connected to at least one process instrument and arranged to transmit instructions to and receive data from the at least one process instrument and to a data network of the industrial process control and automation system that communicates using the open platform data communication protocol. The apparatus memory contains a system repository file containing process data information sent to the apparatus from the at least one process instrument, a stored function block definition file containing function blocks that define a control strategy for controlling the at least one process instrument and an engineering repository containing the characteristics and parameters for the function blocks associated with the at least one process instrument. The processor operates to communicate the process data from the system repository file to the industrial process control and automation system using the open platform data communication protocol and to receive instructions from the industrial process control and automation system to execute the control strategy.
Abstract:
A gateway is configured to perform a method that includes receiving data from a first device using a first protocol. The first protocol is a cloud based protocol. The method also includes determining that the received data is intended for a second device that uses a second protocol. The method further includes converting the received data from the first protocol to the second protocol. In addition, the method includes transmitting the received data to the second device via the second protocol.
Abstract:
An internet of things (IoT) edge appliance is configured to perform a method that includes receiving a configuration signal to configure the IoT edge appliance to communicate with at least one of a first device on the cloud network or a second device on the industrial process control and automation system network. The method also includes configuring a communication link with a cloud network and an industrial process control and automation system network. The method further includes communicating data with the at least one of the first device on the cloud network or the second device on the industrial process control and automation system network.
Abstract:
A method includes transmitting, over a virtual private network (VPN) to a remotely-located control platform, a request for first information associated with a BOOTP protocol synchronization process. The method also includes receiving, from the control platform, a first response comprising the requested first information. The method further includes receiving, over a local network from an embedded device in a distributed control system, a request for second information associated with the BOOTP protocol. In addition, the method includes transmitting, to the embedded device, a second response comprising the requested second information.
Abstract:
A method includes translating at least one application source code file associated with a legacy controller in a distributed control system to instructions executable by a controller simulation computing device, wherein the legacy controller is associated with a legacy operating system and the controller simulation computing device is associated with a second operating system different from the legacy operating system. The method also includes simulating operation of the legacy controller using the instructions and an emulation of the legacy operating system in the controller simulation computing device. The method further includes determining configuration data for the legacy controller during the simulated operation of the legacy controller. In addition, the method includes saving the configuration data to a configuration data file.
Abstract:
A method includes receiving information identifying multiple events in an industrial process control and automation system and routing the events to one or more subscribers, where the one or more subscribers include a notification system. The method also includes translating the events into notifications using the notification system and transmitting each notification for delivery to one or more mobile end-user devices. The method could further include identifying multiple rules, where each rule defines at least one condition and at least one action. Each condition is associated with at least one event, and each action is associated with information related to the at least one event. In addition, the method could include determining whether the at least one condition of each rule is satisfied based on the information identifying the multiple events, where the notifications are generated based on each rule whose at least one condition is satisfied.
Abstract:
An apparatus includes a first network controller configured to communicate over a higher-level industrial process control network, a second network controller configured to communicate over a first lower-level industrial process control network, and a third network controller configured to communicate over a second lower-level industrial process control network. The first network controller is configured to provide first data messages from the higher-level control network to the second and third network controllers for transmission over the lower-level control networks. The second and third network controllers are configured to provide second data messages from the lower-level control networks to the first network controller for transmission over the higher-level control network. Each of the second and third network controllers is configured to provide third data messages from one of the lower-level control networks to another of the second and third network controllers for transmission over another of the lower-level control networks.
Abstract:
A system includes at least one industrial control and automation field device and a remote terminal unit (RTU). The RTU includes input/output (I/O) terminals configured to be coupled to the field devices. The RTU also includes one or more I/O modules having one or more reconfigurable I/O channels configured to be coupled to the I/O terminals. Each reconfigurable I/O channel is configurable as an analog input, an analog input supporting digital communication, an analog output, an analog output supporting digital communication, a digital input, a digital output, and a pulse accumulator input. The RTU further includes at least one processing device configured to control a configuration of each of the one or more reconfigurable I/O channels.
Abstract:
A method and network control system for an industrial processing facility (IPF) including, a plant-wide network coupling at least one controller platform. The controller platform comprising computing hardware and a memory and at least one application module (AM) contained in the memory. The AM comprising a control application, data, configuration and state information for the controller platform, wherein the at least one controller platform is coupled by an input/output network to I/O devices coupled to field devices that are coupled to processing equipment on a field level of an industrial processing facility (IPF). A storage appliance coupled to the plant-wide network is arranged to receive a copy of the AM contained in the controller platform to a backup application in the storage appliance. The backup application returning the AM back to the controller platform to recover and restore a failed controller platform to normal operation.
Abstract:
A method for use by a primary device associated with a secondary device of a redundant pair, the primary device issuing a synchronization request to its control database causing the primary device to send a tracked memory file storage of the primary device to the secondary device to update the secondary device control database and to periodically send on request of the primary device the cached changes made in the primary device to the secondary device to update the secondary device control database. The secondary device using the updated control database to identify communications connections and paths to I/O modules and peer devices assigned to the secondary device and to perform diagnostic testing of the communications connections and paths identified by the interrogation and send diagnostic messages upon detection of faults in the communication connections and paths identified.