Abstract:
A color filter and a black matrix thereof are provided. The black matrix disposed on the substrate comprises a frame that defines a pixel area for accommodating color filter inks when performing the ink-jet process, and a spacer disposed in each of the pixels for preventing inks from overflowing to adjacent pixel areas and improving the flatness of the formed color filter layer.
Abstract:
A pixel structure including a scan line, a data line, an active device, a shielding electrode, and a pixel electrode is provided on a substrate. The data line includes an upper conductive wire and a bottom conductive wire. The upper conductive wire is disposed over and across the scan line. The bottom conductive wire is electrically connected to the upper conductive wire. The active device is electrically connected to the scan line and the upper conductive wire. The shielding electrode is disposed over the bottom conductive wire. The pixel electrode disposed over the shielding electrode is electrically connected to the active device. In addition, parts of the pixel electrode and parts of the shielding electrode form a storage capacitor.
Abstract:
A pixel structure includes a scan line, a data line, an active element, a first passivation layer, a second passivation layer and a pixel electrode. The data line includes a first data metal segment and a second data metal layer. The active element includes a gate electrode, an insulating layer, a channel layer, a source and a drain. The channel layer is positioned on the insulating layer above the gate electrode. The source and the drain are positioned on the channel layer. The source is coupled to the data line. The first passivation layer and the second passivation layer cover the active element and form a first contact hole to expose a part of the drain. The second passivation layer covers a part edge of the drain. The pixel electrode is disposed across the second passivation layer and coupled to the drain via the first contact hole.
Abstract:
A pixel structure including a gate, a gate dielectric layer, a patterned semiconductor layer having a channel area disposed above the gate, a patterned dielectric layer having an etching-stop layer disposed above the gate and a number of bumps, a patterned metal layer having a reflective pixel electrode, a source and a drain, an overcoat dielectric layer, and a transparent pixel electrode sequentially disposed on a substrate is provided. The source and the drain respectively cover portions of the channel area. The reflective pixel electrode connects the drain and covers the bumps to form an uneven surface. The overcoat dielectric layer disposed on a transistor constituted by the gate, the gate dielectric layer, the patterned semiconductor layer, the source and the drain has a contact opening exposing a portion of the reflective pixel electrode. The transparent pixel electrode is electrically connected to the reflective pixel electrode through the contact opening.
Abstract:
A method for fabricating a pixel structure of a liquid crystal device is provided. The method comprises providing a substrate defining a thin film transistor (TFT) region and a display region thereon. An opaque conductive layer is formed on the TFT region, and a transparent pixel electrode is formed on the display region. A patterned photoresist passivation layer is formed by backside exposure process on the TFT region, wherein the opaque conductive layer serves as the photo-mask during the backside exposure process. The photoresist passivation layer is subjected to a middle bake process to be reflowed, resulting in a complete covering of the opaque conductive layer.
Abstract:
A liquid crystal display (LCD) is provided. The LCD includes a display panel and a voltage supply device (VSD). The display panel includes a plurality of scan lines, a plurality of data lines disposed substantially perpendicularly with the scan lines, and a plurality of pixels. The pixels are respectively electrically connected with the corresponding data line and the corresponding scan line, and are arranged in an array. Each of the pixels includes a common line and a compensation line, wherein the common line is located in the transparent area to receive a common voltage, and the compensation line is located in the reflection area to receive a stable voltage. The VSD is coupled to the compensation line of each of the pixels for continuously and correspondingly providing the stable voltage to the compensation line of each of the pixels.
Abstract:
A thin film transistor array structure and a method for manufacturing the same are provided. The thin film transistor array structure comprises a substrate, including a transition area and a pad area. A patterned first metal layer is formed on the substrate, wherein the patterned first metal layer includes a data connecting line disposed in the transition area, and a data pad and a gate pad disposed in the pad area. A patterned first insulation layer is formed on the patterned first metal layer. The patterned first insulation layer at least defines a first opening on the gate pad, a second opening on the data pad, and a third opening in the transition area, so as to simplify following processes to increase the yield.
Abstract:
A liquid crystal display includes: a substrate; a plurality of pixel electrodes formed on the substrate and arranged corresponding to a pixel array; a first data line and a second data line formed on the substrate; a plurality of scan lines formed on the substrate, in which the scan lines cross the first data line and the second data line; a first branch electrode electrically connects a pixel electrode and partially overlaps the first data line; and a second branch electrode electrically connects the pixel electrode and partially overlaps the second data line, in which the first branch electrode and the second branch electrode are disposed opposite to the pixel electrode.
Abstract:
A tri-gate pixel structure includes three sub-pixel regions, three gate lines, a data line, three thin film transistors (TFTs), three pixel electrodes, and a common line. The gate lines are disposed along a first direction, and the data line is disposed along a second direction. The TFTs are disposed in the sub-pixel regions respectively, wherein each TFT has a gate electrode electrically connected to a corresponding gate line, a source electrode electrically connected to the data line, and a drain electrode. The three pixel electrodes are disposed in the three sub-pixel regions respectively, and each pixel electrode is electrically connected to the drain electrode of one TFT respectively. The common line crosses the gate lines and partially overlaps the three gate lines, and the common line and the three pixel electrodes are partially overlapped to respectively form three storage capacitors.
Abstract:
An active device array substrate and its fabricating method are provided. According to the subject invention, the elements of an array substrate such as the thin film transistors, gate lines, gate pads, data lines, data pads and storage electrodes, are provided by forming a patterned first metal layer, an insulating layer, a patterned semiconductor layer and a patterned metal multilayer. Furthermore, the subject invention uses the means of selectively etching certain layers. Using the aforesaid means, the array substrate of the subject invention has some layers with under-cut structures, and thus, the number of the time-consuming and complicated mask etching process involved in the production of an array substrate can be reduced. The subject invention provides a relatively simple and time-saving method for producing an array substrate.