摘要:
A load control system for a wind turbine and a method for controlling wind turbine loading are provided. The system includes a sensor assembly. The sensor assembly includes a light source mounted to a rotor shaft and configured to emit a light, and a sensor mounted to the rotor shaft and configured to sense the light and measure a location of the light in a plane perpendicular to a longitudinal axis. The system further includes a controller communicatively coupled to the sensor assembly.
摘要:
A fiber-optic dynamic sensing module comprises a support member, a beam extending from the support member, and a pre-strained fiber Bragg grating sensor and a strain-free fiber Bragg grating sensor mounted on the beam. The pre-strained and strain-free fiber Bragg grating sensors each comprise a Bragg grating inscribed in a fiber. The Bragg grating of the pre-strained fiber Bragg grating sensor is packaged more tightly along a longitudinal direction of the beam than the Bragg grating of the strain-free fiber Bragg grating sensor.
摘要:
An optical fiber sensing cable is disclosed. The optical fiber sensing cable comprises a fiber with a core having an index of refraction n1, and a circumferential surface of the fiber including a nanoporous cladding having an index of refraction index n2. The methods of preparing the fiber sensor cable, including forming the nanoporous cladding and the sensor systems incorporating the optical fiber sensing cable of this invention are also disclosed.
摘要:
A fiberoptic system for clearance detection between rotating and stationary turbomachinery components is presented. The system comprises an optical fiber probe comprising a plurality of optical fibers, at least one of the optical fibers comprising a transmission fiber and at least one of the optical fibers comprising a signal fiber; a light source for providing light through the transmission fiber towards a target; filters for receiving light from the signal fibers, at least two of the filters for filtering different wavelengths; and at least one photodetector for receiving filtered light from the filters.
摘要:
A fiberoptic multi-parameter sensing system for monitoring turbomachinery system shaft static and dynamic torques, vibration modes and associated operation status includes a multi-furcated fiber bundle based optical splitter configured to transmit light to a surface of at least one turbomachinery system shaft through a plurality of optical fiber bundles disposed at a plurality of locations in proximity to the surface of the at least one shaft, in which the plurality of locations together are arranged in a substantially axial direction between the ends of the at least one shaft. The system further includes an array of high-temperature bifurcated fiber bundle based reflectance probes to receive reflectance signals from the shaft surface and send to an array of photosensitive detectors, configured to detect dynamic light reflected from the at least one turbomachinery system shaft surface in response to the transmitted light during rotation of at least one turbomachinery system shaft and generate dynamic reflected light signals there from. A sensing mechanism is configured to determine a torque or vibration on at least one turbomachinery system shaft in response to the dynamic reflected light signal signatures based on time-domain and frequency-domain signal processes.
摘要:
A gasification distributed temperature sensing system is disclosed. The sensing system includes a gasification vessel and a harsh environment fiber sensing cable package disposed within the gasification vessel, the sensing cable package includes a thermally conductive enclosure and at least one sensor cable including a distributed array of high-temperature fiber Bragg grating sensors, wherein the sensors are disposed and hermetically sealed within the thermally conductive enclosure.
摘要:
A gasification distributed temperature sensing system is disclosed. The sensing system includes a gasification vessel and a harsh environment fiber sensing cable package disposed within the gasification vessel, the sensing cable package includes a thermally conductive enclosure and at least one sensor cable including a distributed array of high-temperature fiber Bragg grating sensors, wherein the sensors are disposed and hermetically sealed within the thermally conductive enclosure.
摘要:
A device operating in an environment includes a fiber optic sensing system having one or more fiber optic sensors disposed in the device and configured to detect one or more parameters related to the device. The parameters may include temperature, strain, pressure, vibration, or combinations thereof.
摘要:
A fiber Bragg grating multi-point temperature sensing system comprises a fiber sensing cable package and a plurality of clamping devices distributed along an inner surface of a wall in a circumferential direction for securing the fiber sensing cable package. The fiber sensing cable package comprises a fiber Bragg grating based sensing cable comprising at least one optical fiber, a plurality of Bragg gratings inscribed in the optical fiber, and a fabric layer and a sheath tube surrounding the optical fiber. The multi-point fiber temperature sensing system comprises a light source for transmitting light to the Bragg gratings based sensing cable package, and a detector module receiving reflected signal. Each clamping device comprises a radiation tee and defines at least one mounting hole for securing the fiber sensing cable.
摘要:
A method includes transmitting light through at least one transmission optical fiber towards a target, receiving light reflected from the target through at least one signal optical fiber, filtering the received light at least two different wavelengths, and using the filtered light to detect a clearance variation. An optical fiber probe includes a plurality of optical fibers, a moisture-resistant enclosure enclosing the optical fibers, a hydrophobic layer situated over an end of the optical fiber probe for preventing moisture from reaching the optical fibers, and a broadband transmission layer between ends of the optical fibers and the hydrophobic layer.