摘要:
It is possible to achieve fast high-frequency link discovery by communicating location parameters identifying a spatial location of a mobile device over a low-frequency interface to a low-frequency access point (AP). The location parameters are then used to identify antenna configuration parameters (e.g., precoders, etc.) for communicating discovery signals between the mobile device and a high-frequency access point. In one embodiment, the low-frequency AP relays the location parameters to the high-frequency AP, which uses the spatial location of the mobile device to perform link discovery. In another embodiment, the low-frequency AP communicates high-frequency antenna configuration parameters to the mobile device over the low-frequency interface.
摘要:
There are disclosed systems, devices, and methods for distributing pre-fetch data. A parent node obtains pre-fetch data comprising at least one of: i) data expected to be of interest to a particular user, pre-fetched by the parent node from at least one data source; and (ii) at least one identifier identifying data expected to be of interest to the particular user, for pre-fetching the identified data at a child node. The parent node selects first and second subsets of the pre-fetch data for transmission, respectively, to first and second child nodes, the selecting based on at least a predicted future location of the particular user and a respective geographic location of the first and second child nodes; and transmits the first and second subsets of the pre-fetch data, respectively, to the first and second child nodes.
摘要:
Inter-cell interference can be reduced by re-assigning uplink scheduling responsibilities for a user equipment (UE) from a controller associated with a serving access point (AP) to a controller associated with a neighboring AP, as the controller associated with the neighboring AP may have better access to channel information corresponding to interference experienced by the neighboring AP as a result of uplink transmissions from the UE. After the re-assignment, the controller associated with the neighboring AP may independently schedule an uplink transmission parameter (e.g., a transmit power level, a modulation coding scheme level and/or a precoder) of the UE in a manner that mitigates inter-cell-interference in the neighboring cell.
摘要:
Dynamic point selection (DPS) can be implemented using access points having partial or no DPS synchronization. Specifically, a mobile device may broadcast a bounce back message to access points participating in DPS transmissions to signal that a data segment has been successfully received and/or decoded by the mobile device. The bounce back message may cause the access points to drop remaining packets corresponding to the data segment from their buffers without sending those remaining packets over their respective radio interfaces. The bounce back message may be broadcast over any wireless signaling channel, such as via radio link control (RLC) signaling. Moreover, different priorities may be assigned to encoded packets intended for DPS transmission based on whether the encoded packets are communicated over a primary or secondary backhaul path.
摘要:
It is possible to achieve fast high-frequency link discovery by communicating location parameters identifying a spatial location of a mobile device over a low-frequency interface to a low-frequency access point (AP). The location parameters are then used to identify antenna configuration parameters (e.g., precoders, etc.) for communicating discovery signals between the mobile device and a high-frequency access point. In one embodiment, the low-frequency AP relays the location parameters to the high-frequency AP, which uses the spatial location of the mobile device to perform link discovery. In another embodiment, the low-frequency AP communicates high-frequency antenna configuration parameters to the mobile device over the low-frequency interface.
摘要:
Embodiments are provided for header compression with online network codes. A header formulation is used in accordance with the network codes to reduce the header overhead. An agent node between a source of packets and a user equipment (UE) adds to a header in the packets block labels corresponding to blocks of data in the packets. The agent node further adds, to a payload portion of the packets, start and end times for transmitting the blocks. The blocks of data are encoded using an online network coding scheme and the packets are sent to an access node serving the UE. The access node receives the packets, compresses the header by compressing bits of the block labels based on a pre-defined finite number of paths between the agent node and a plurality of access nodes components serving the UE, and sends the compressed header in the packets to the UE.
摘要:
Forward Error Correction (FEC) techniques that generate independently decodable resource blocks are beneficial for Successive Interference Cancellation (SIC) demodulation. One FEC technique for generating independently decodable resource blocks includes mapping locally decodable FEC codeblocks into unique resource blocks such that substantially all of the bits of the FEC codeblock are carried within a single resource block. The locally decodable FEC codeblocks can be generated from different FEC encoding modules or from a common FEC encoding module. Another technique for generating independently decodable resource blocks includes encoding a stream of information bits into low-density parity-check (LDPC) codeblocks having high ratios of inward peering parity bits. These high ratios of inward peering parity bits allow substantial portions of each LDPC codeblock to be decoded independently from information carried by other LDPC codeblocks.
摘要:
A method includes receiving, by a first device from a second device, a plurality of encoded messages on a plurality of transmission time intervals (TTIs), where the plurality of encoded messages are forward error correction (FEC) encoded, and where the FEC spans the plurality of encoded messages and decoding the plurality of encoded messages using FEC. The method also includes determining a plurality of decoding status messages in accordance with decoding the plurality of encoded messages and transmitting, by the first device to the second device, the plurality of decoding status messages less often than once every TTI.
摘要:
A user equipment (UE) may compute uplink power control levels as a function of a downlink signal to noise ratio (SNIR). For example, the UE may determine an uplink transmit power level by summing a full power control (FPC) transmit power level, a product of a first adjustment factor (β) and the downlink SNIR, and a negative of a second adjustment factor (Δ2) when the product of the first adjustment factor (β) and the downlink SNIR is greater than or equal to the second adjustment factor (Δ2). A UE may also compute an uplink power control level as a function of target and/or current interference levels associated with neighboring base stations. A UE may also iteratively reduce a transmit power level until an interference level experienced by a neighboring base station has fallen below a threshold.