摘要:
A surface enhanced Raman spectroscopy (SERS) apparatus, system and method employ a plurality of nanorods configured to vibrate. The apparatus includes the nanorods having tips at free ends opposite an end attached to a substrate. The tips are configured to adsorb an analyte and to vibrate at a vibration frequency. The apparatus further includes a vibration source configured to vibrate the free ends of the nanorods at the vibration frequency in a back-and-forth motion. Vibration of the nanorods is configured to facilitate detection of a Raman scattering signal emitted by the analyte adsorbed on the nanorod tips. The system further includes a synchronous detector configured to receive the Raman signal and to be gated cooperatively with the vibration of the nanorods. The method includes inducing a vibration of the nanorods, illuminating the vibrating tips to produce a Raman signal, and detecting the Raman signal using the detector.
摘要:
An environment sensitive device is disclosed. The device includes a substrate, a three-dimensional structure established on the substrate, a first coating established on a first portion of the three-dimensional structure, and a second coating established on a second portion of the three-dimensional structure. The first and second coatings contain different materials that are configured to respond differently when exposed to a predetermined external stimulus.
摘要:
A nanorod surface enhanced Raman spectroscopy (SERS) apparatus, system and method of SERS using nanorods that are activated with a key. The nanorod SERS apparatus includes a plurality of nanorods, an activator to move the nanorods from an inactive to an active configuration and the key to trigger the activator. The nanorod SERS system further includes a Raman signal detector and an illumination source. The method of SERS using nanorods includes activating a plurality of nanorods with the key, illuminating the activated plurality of nanorods, and detecting a Raman scattering signal when the nanorods are in the active configuration.
摘要:
A sensing device (10, 10′) includes a substrate (14), and first and second electrodes (EIC, EICS, EO) established on the substrate (14). The first electrode (EIC, EICS) has a three-dimensional shape, and the second electrode (EO) is electrically isolated from and surrounds a perimeter of the first electrode (EIC, EICS).
摘要:
A surface enhanced Raman spectroscopy (SERS) apparatus, system and method employ a plurality of nanorods configured to vibrate. The apparatus includes the nanorods having tips at free ends opposite an end attached to a substrate. The tips are configured to adsorb an analyte and to vibrate at a vibration frequency. The apparatus further includes a vibration source configured to vibrate the free ends of the nanorods at the vibration frequency in a back-and-forth motion. Vibration of the nanorods is configured to facilitate detection of a Raman scattering signal emitted by the analyte adsorbed on the nanorod tips. The system further includes a synchronous detector configured to receive the Raman signal and to be gated cooperatively with the vibration of the nanorods. The method includes inducing a vibration of the nanorods, illuminating the vibrating tips to produce a Raman signal, and detecting the Raman signal using the detector.
摘要:
A system for bi-directional data transmission includes a first array coupled to a first subsystem and a second array coupled to a second subsystem. The first array includes a first plurality of transmitters that produce first optical signals that are transmitted through free space, and a first plurality of receivers. The second array includes a second plurality of transmitters that produce second optical signals that are transmitted through free space to the first plurality of receivers, and a second plurality of receivers that is configured to receive the first optical signals. An image-forming apparatus is operatively positioned between the first and second arrays and is configured to concurrently form an image of the first plurality of transmitters on the second plurality of receivers and an image of the second plurality of transmitters on the first plurality of receivers.
摘要:
Beam couplers and splitters are disclosed herein. An embodiment of a beam coupler and splitter includes a first waveguide including a bevel and a bend, and a second waveguide including a bevel complementarily shaped to the first waveguide bevel. The first waveguide bevel is configured to totally internally reflect at least some light incident thereon. The second waveguide is coupled to the first waveguide such that i) the second waveguide bevel is adjacent to at least a portion of the first waveguide bevel, and ii) a predetermined coupling ratio is achieved.
摘要:
Embodiments of the present invention relate to a family of image-rotation prisms. Each image-rotation prism has the property that as an image-rotation prism is rotated, an image passing through the image-rotation prism rotates at twice the angular rate of the image-rotation prism. Embodiments of the present invention include optical systems that can be used for board-to-board communications and employ the image-rotation prisms to compensate for arbitrary axial rotations and misalignment of optical signals and can be used to direct optical signals output from transmitters on one board to particular detectors of a detector arrangement located on an adjacent board.
摘要:
Embodiments of the present invention are directed to beamsplitters that include optical elements to correct for beam offset. In one embodiment, a beamsplitter includes a first plate having two approximately parallel and opposing planar surfaces and a partially reflective layer coating one of the planar surfaces, and a compensator plate having two approximately parallel and opposing planar surfaces. The compensator plate is positioned so that an incident beam of light passing through the compensator plate acquires a first beam offset. Subsequently, the incident beam of light with the first beam offset passing through the first plate is split into a reflected beam and a transmitted beam by the partially reflective layer where the transmitted beam has a second beam offset that substantially cancels the first beam offset such that the transmitted beam is approximately parallel to and aligned with the incident beam.
摘要:
Various embodiments of the present invention relate generally to systems for performing Raman spectroscopy. In one embodiment, a system for performing Raman spectroscopy comprises an analyte holder having a surface configured to retain an analyte and a light concentrator configured to receive an incident beam of light, split the incident beam into one or more beams, and direct the one or more beams to substantially intersect at the surface. The system may also include a collector configured to focus each of the one or more beams onto the surface, collect the Raman scattered light emitted from the analyte, and direct the Raman scattered light away from the surface.