Abstract:
A processor includes a memory to store original code and a fingerprint data structure, which stores, in a way thereof, an entry including a physical address for a page and a stored fingerprint generated from the page of the original code. A core includes a translation protection data structure (TPDS) to detect modification to the page, wherein the core is to, upon execution of a translation check instruction included within a translated page code corresponding to the page, transmit, to the TPDS, a modification check request having the physical address of the page in the memory and the way of the fingerprint data structure. A hardware TPDS miss handler is coupled to the core and is to process a miss request received from the TPDS responsive to the physical address not being present in the TPDS.
Abstract:
Embodiments of an invention for custom protection against side channel attacks are disclosed. In one embodiment, a processor includes instruction hardware and execution hardware. The instruction hardware is to receive an instruction to provide for shielding code against side channel attacks, wherein the instruction includes a first operand to specify one of a plurality of levels of protection. The execution hardware is to execute the instruction, wherein execution of the instruction includes configuring the processor to provide a specified level of protection.
Abstract:
Technologies for optimized binary translation include a computing device that determines a cost-benefit metric associated with each translated code block of a translation cache. The cost-benefit metric is indicative of translation cost and performance benefit associated with the translated code block. The translation cost may be determined by measuring translation time of the translated code block. The cost-benefit metric may be calculated using a weighted cost-benefit function based on an expected workload of the computing device. In response to determining to free space in the translation cache, the computing device determines whether to discard each translated code block as a function of the cost-benefit metric. In response to determining to free space in the translation cache, the computing device may increment an iteration count and skip each translated code block if the iteration count modulo the corresponding cost-benefit metric is non-zero. Other embodiments are described and claimed.
Abstract:
A processor includes a decode unit to decode a return target restrictive return from procedure (RTR return) instruction. A return target restriction unit is responsive to the RTR return instruction to determine whether to restrict an attempt by the RTR return instruction to make a control flow transfer to an instruction at a return address corresponding to the RTR return instruction. The determination is based on compatibility of a type of the instruction at the return address with the RTR return instruction and based on compatibility of first return target restrictive information (RTR information) of the RTR return instruction with second RTR information of the instruction at the return address. A control flow transfer unit is responsive to the RTR return instruction to transfer control flow to the instruction at the return address when the return target restriction unit determines not to restrict the attempt.
Abstract:
In an embodiment, a processor includes execution logic to execute binary translated (BT) code that is translated from native architecture (NA) code. The processor also includes processor trace (PT) logic to output trace information responsive to execution of a BT direct branch instruction in the BT code when the NA code includes an NA direct branch instruction that corresponds to the BT direct branch instruction. The trace information is to include an indication of an NA outcome associated with an execution of the NA direct branch instruction. The trace information is to be based on a BT outcome associated with the execution of the BT direct branch instruction. Other embodiments are described and claimed.
Abstract:
Embodiments of systems, methods, and apparatuses for heterogeneous computing are described. In some embodiments, a hardware heterogeneous scheduler dispatches instructions for execution on one or more plurality of heterogeneous processing elements, the instructions corresponding to a code fragment to be processed by the one or more of the plurality of heterogeneous processing elements, wherein the instructions are native instructions to at least one of the one or more of the plurality of heterogeneous processing elements.
Abstract:
Embodiments of systems, methods, and apparatuses for heterogeneous computing are described. In some embodiments, a hardware heterogeneous scheduler dispatches instructions for execution on one or more plurality of heterogeneous processing elements, the instructions corresponding to a code fragment to be processed by the one or more of the plurality of heterogeneous processing elements, wherein the instructions are native instructions to at least one of the one or more of the plurality of heterogeneous processing elements.
Abstract:
Systems, methods, and apparatuses relating to swizzle operations and disable operations in a configurable spatial accelerator (CSA) are described. Certain embodiments herein provide for an encoding system for a specific set of swizzle primitives across a plurality of packed data elements in a CSA. In one embodiment, a CSA includes a plurality of processing elements, a circuit switched interconnect network between the plurality of processing elements, and a configuration register within each processing element to store a configuration value having a first portion that, when set to a first value that indicates a first mode, causes the processing element to pass an input value to operation circuitry of the processing element without modifying the input value, and, when set to a second value that indicates a second mode, causes the processing element to perform a swizzle operation on the input value to form a swizzled input value before sending the swizzled input value to the operation circuitry of the processing element, and a second portion that causes the processing element to perform an operation indicated by the second portion the configuration value on the input value in the first mode and the swizzled input value in the second mode with the operation circuitry.
Abstract:
Embodiments of an invention for control transfer overrides are disclosed. In one embodiment, a processor includes an instruction unit to receive a control transfer instruction. The instruction unit includes a transfer override register to provide an alternative target for the control transfer instruction.
Abstract:
A vector reduction instruction is executed by a processor to provide efficient reduction operations on an array of data elements. The processor includes vector registers. Each vector register is divided into a plurality of lanes, and each lane stores the same number of data elements. The processor also includes execution circuitry that receives the vector reduction instruction to reduce the array of data elements stored in a source operand into a result in a destination operand using a reduction operator. Each of the source operand and the destination operand is one of the vector registers. Responsive to the vector reduction instruction, the execution circuitry applies the reduction operator to two of the data elements in each lane, and shifts one or more remaining data elements when there is at least one of the data elements remaining in each lane.