Abstract:
An embodiment device includes a body structure having an interior cavity, a control chip disposed on a first interior surface of the interior cavity, and a sensor attached, at a first side, to a second interior surface of the interior cavity opposite the first interior surface. The sensor has a mounting pad on a second side of the sensor that faces the first interior surface, and the sensor is vertically spaced apart from the control chip by an air gap, with the sensor is aligned at least partially over the control chip. The device further includes an interconnect having a first end mounted on the mounting pad, the interconnect extending through the interior cavity toward the first interior surface, and the control chip is in electrical communication with the sensor by way of the interconnect.
Abstract:
A device includes a substrate that includes conductive structures and has a first surface that is opposite to a second surface. Conductive pillars are built up over and electrically coupled to at least one of the conductive structures. An integrated circuit is disposed over the first surface and electrically coupled to the conductive structures. A molding compound is formed over the first surface of the substrate.
Abstract:
An integrated passives package includes an encapsulation compound and a plurality of electrically conductive pads embedded in the encapsulation compound. Each of the pads has opposing first and second sides. The first side of the pads is uncovered by the encapsulation compound and forms array of external electrical connections at a first side of the package. The integrated passives package further includes a plurality of passive components embedded in the encapsulation compound. Each of the passive components has a first terminal attached to one of the pads and a second terminal attached to a different one the pads at the second side of the pads. Corresponding semiconductor modules and methods of manufacturing are also provided.
Abstract:
A semiconductor device includes a microphone module implemented on a first semiconductor die and a signal processing module implemented on a second semiconductor die. The microphone module includes a movable microphone element arranged at a main side of the first semiconductor die and the second semiconductor die is mounted to the main side of the first semiconductor die.
Abstract:
A semiconductor package includes a substrate formed of electrically insulating material and having a die mounting surface, a first semiconductor die embedded within the substrate and comprising a first conductive terminal that faces the die mounting surface, a second semiconductor die mounted on the die mounting surface and comprising a first conductive terminal that faces and is spaced apart from the die mounting surface, and a first electrical connection that directly connects the first conductive terminals of the first and second semiconductor dies together, wherein the second semiconductor die partially overlaps with the first semiconductor die.
Abstract:
A method of forming a chip package is provided. The method may include: arranging an elastic thermal interface material over a semiconductor chip, wherein the elastic thermal interface material may be configured to transfer heat from the chip to an outside; arranging a mold around the thermal interface material and at least partially around the semiconductor chip, thereby compressing the elastic thermal interface material with the mold; and filling the mold with a packaging material.
Abstract:
A semiconductor package includes a substrate formed of electrically insulating material and having a die mounting surface, a first semiconductor die embedded within the substrate and comprising a first conductive terminal that faces the die mounting surface, a second semiconductor die mounted on the die mounting surface and comprising a first conductive terminal that faces and is spaced apart from the die mounting surface, and a first electrical connection that directly connects the first conductive terminals of the first and second semiconductor dies together, wherein the second semiconductor die partially overlaps with the first semiconductor die.
Abstract:
A semiconductor package includes: a carrier having a first side and a second side opposite the first side, the first side having a plurality of contact structures; a semiconductor die having a first side and a second side opposite the first side, the first side of the semiconductor die having a plurality of pads attached to the plurality of contact structures at the first side of the carrier; a metal plate attached to the second side of the semiconductor die, the metal plate having a size that is independent of the size of the carrier and based on an expected thermal load to be presented by the semiconductor die; and an encapsulant confined by the carrier and the metal plate and laterally surrounding an edge of the semiconductor die. Corresponding methods of production are also provided.
Abstract:
A semiconductor package includes a frame having an insulative body with a first main surface and a second main surface opposite the first main surface, a first plurality of metal traces at the first main surface, and a first cavity in the insulative body. A thermally and/or electrically conductive material filling the first cavity in the insulative body and having a different composition than the first plurality of metal traces. The thermally and/or electrically conductive material provides a thermally and/or electrically conductive path between the first and the second main surfaces of the insulative body. A semiconductor die attached to the frame at the first main surface of the insulative body is electrically connected to the first plurality of metal traces and to the thermally and/or electrically conductive material filling the first cavity in the insulative body. A corresponding method of manufacture is also described.
Abstract:
An embodiment device includes a body structure having an interior cavity, a control chip disposed on a first interior surface of the interior cavity, and a sensor attached, at a first side, to a second interior surface of the interior cavity opposite the first interior surface. The sensor has a mounting pad on a second side of the sensor that faces the first interior surface, and the sensor is vertically spaced apart from the control chip by an air gap, with the sensor is aligned at least partially over the control chip. The device further includes an interconnect having a first end mounted on the mounting pad, the interconnect extending through the interior cavity toward the first interior surface, and the control chip is in electrical communication with the sensor by way of the interconnect.