Abstract:
Logic may comprise hardware and/or code to select a narrow band from a wider channel bandwidth. Logic of communications between devices may select, e.g., a 1 or 2 MHz sub-channel from a wider channel bandwidth such as 4, 8, and 16 MHz and transmit packets on the selected 1 or 2 MHz channel. For instance, a first device may comprise an access point and a second device may comprise a station such as a low power sensor or a meter that may, e.g., operate on battery power. Logic of the devices may facilitate a frequency selective transmission scheme. Logic of the access point may transmit sounding packets or control frames across the sub-channels of the wide bandwidth channel, facilitating selection by the stations of a sub-channel and subsequent communications on the sub-channel between the access point and the station.
Abstract:
Logic may comprise hardware and/or code to select a narrow band from a wider channel bandwidth. Logic of communications between devices may select, e.g., a 1 or 2 MHz sub-channel from a wider channel bandwidth such as 4, 8, and 16 MHz and transmit packets on the selected 1 or 2 MHz channel. For instance, a first device may comprise an access point and a second device may comprise a station such as a low power sensor or a meter that may, e.g., operate on battery power. Logic of the devices may facilitate a frequency selective transmission scheme. Logic of the access point may transmit sounding packets or control frames across the sub-channels of the wide bandwidth channel, facilitating selection by the stations of a sub-channel and subsequent communications on the sub-channel between the access point and the station.
Abstract:
In various embodiments, a multi-channel request-to-send and a multi-channel clear-to-send may be used in a wireless communications network to assure that a subsequent multi-channel communications exchange between two devices takes place only over channels that are sensed by both devices as being free.
Abstract:
Embodiments of a user station (STA) and methods for WLAN channel selection through beacon requests are generally described herein. In some embodiments, a STA requests that an access point (AP) transmit a beacon signal on a first sub-band. The first sub-band may include a channel of interest to the STA. The STA may determine that the AP supports the first sub-band if the AP transmits the requested beacon signal.
Abstract:
Logic to coordinate communications of wireless communications devices to attenuate collisions, such as through coordination of communications by implementing slot logic in an access point. The slot logic may determine a time slot schedule for beacon intervals and may further transmit a synch frame at the time slot boundaries. If the channel is busy, the slot logic may not send the synch frame. The slot logic may also comprise distribution logic to determine a probability of collisions and to instruct one or more of the devices to spread out their channel accesses across beacons intervals to reduce the chance of collisions. A station associated with the access point may comprise synch logic to wake up at a slot boundary and wait for a synch frame or any other packets to synch to the medium.
Abstract:
Logic may coordinate communications of different types of wireless communications devices such as high power and low power wireless communications devices. Logic may coordinate communications by assigning time slots to a low power station (LP-STA) in a management frame such as a beacon transmitted by an access point (AP) associated with the LP-STA. Logic of the high power stations (HP-STAB) may receive the beacon and shepard logic of the HP-STA may defer transmissions by the HP-STA throughout the duration(s) indicated in the beacon from the AP. Logic of the LP-STA may comprise carrier sense multiple access with collision avoidance logic to determine when to transmit a communication. Shepard logic of an HP-STA may detect the communication from the LP-STA and defer transmission of communication during a time duration for the communication by the LP-STA.
Abstract:
Methods and systems for communicating in a wireless network may distinguish different types of packet structures by modifying the phase of a modulation constellation, such as a binary phase shift keying (BPSK) constellation, in a signal field. Receiving devices may identify the type of packet structure associated with a transmission or whether the signal field is present by the phase of the modulation constellation used for mapping for the signal field. In one embodiment, the phase of the modulation constellation may be determined by examining the energy of the I and Q components after Fast Fourier Transform. Various specific embodiments and variations are also disclosed.
Abstract:
Embodiments of a wireless station to operate as a per-symbol relay device and method for retransmission of symbols between client devices and a master device using millimeter-wave links is generally disclosed herein. In some embodiments, the relay device may receive one or more of independent symbol streams from the master device. Each independent symbol stream may comprise packets that include groups of one or more symbols. Each group within a packet may be destined for a different one of the client devices. The relay device may separately decode each symbol or group of symbols to generate an independent stream of symbols for retransmission to the client devices using beamforming. The relay device may be arranged to receive, decode, and retransmit each symbol or group of symbols within a delay that is bounded by the number of symbols in the group.
Abstract:
Methods and systems for communicating in a wireless network may distinguish different types of packet structures by modifying the phase of a modulation constellation, such as a binary phase shift keying (BPSK) constellation, in a signal field. Receiving devices may identify the type of packet structure associated with a transmission or whether the signal field is present by the phase of the modulation constellation used for mapping for the signal field. In one embodiment, the phase of the modulation constellation may be determined by examining the energy of the I and Q components after Fast Fourier Transform. Various specific embodiments and variations are also disclosed.