Abstract:
For example, an apparatus may be configured to cause a first Bluetooth (BT) mobile device to configure a P2P voice link for voice communication between first and second BT audio devices via a first BT Short-Range (SR) link, a BT Long-Range (LR) link and a second BT SR link, the first BT SR link between the first BT audio device and the first BT mobile device, the BT LR link between the first BT mobile device and a second BT mobile device, and the second BT SR link between the second BT mobile device and the second BT audio device; to communicate a BT SR packet over the first BT SR link, the BT SR packet including a voice payload to be communicated between the first and second BT audio devices; and to communicate a BT LR packet including the voice payload over the BT LR link.
Abstract:
For example, a Bluetooth (BT) apparatus may include a System on Chip (SoC), the SoC including an interface to a BT Lower Medium Access Control (MAC) (L-MAC) external to the SoC; and a BT Upper MAC (U-MAC) to generate setup information to configure one or more BT activities by the BT L-MAC, and to send the setup information to the BT L-MAC via the interface, the setup information to configure one or more wakeup criteria for the BT L-MAC to wake up the BT U-MAC, the one or more BT activities including at least a BT scan, wherein the BT U-MAC is configured to enter a power save mode and to wake up from the power save mode based on receipt of a wakeup indication from the BT L-MAC via the interface to the BT L-MAC.
Abstract:
Embodiments of a user station (STA) and methods for WLAN channel selection through beacon requests are generally described herein. In some embodiments, a STA requests that an access point (AP) transmit a beacon signal on a first sub-band. The first sub-band may include a channel of interest to the STA. The STA may determine that the AP supports the first sub-band if the AP transmits the requested beacon signal.
Abstract:
In one embodiment, an apparatus of a wireless communication device includes control circuitry to cause receiver circuitry of the wireless communication device to switch between an on-mode and an off-mode. The apparatus also includes synchronizing circuitry to: perform a correlation on signals of a packet received by the receiver circuitry when in the on-mode to detect a pattern in the received signals, and cause the control circuitry to hold the receiver circuitry in the on-mode based on detection of the pattern in the received signals. The apparatus further includes demodulation circuitry to process additional signals of the packet received by the receiver circuitry when held in the on-mode.
Abstract:
This disclosure describes systems, methods, and devices related to efficient concurrent multichannel discovery and reception. A device may determine high performance communications circuitry and low performance communications circuitry within a first component of the device. The device may determine one or more high power radio frequency (RF) chains associated with at least one of a high frequency band or a low frequency band. The device may determine one or more low power RF chains associated with at least one of the high frequency band or the low frequency band. The device may perform a first operation with the high performance communications circuitry using a dynamically selected one of the one or more high power RF chains or the one or more low power RF chains and a second operation with the low performance communications circuitry using a dynamically selected one of the one or more low power RF chains or the one or more high power RF chains, wherein the dynamic selection is based at least in part on a use case, and wherein the first operation and the second operation are performed concurrently.
Abstract:
Embodiments of wireless devices and methods for aggregate MPDU (A-MPDU) communications in an IEEE 802.11n network are generally described herein. Two or more A-MPDU subframes are aggregated to form an A-MPDU. In some embodiments, an access point (AP) that is configured for power-save multi-poll (PSMP) operation transmits a PSMP burst comprising a PSMP sequence of two or more A-MPDUs to a plurality of mobile stations (STA) during a downlink phase of the PSMP sequence. During PSMP operation, the AP is to receive a PSMP sequence of two or more A-MPDUs from the STAs during an uplink phase of the PSMP sequence.
Abstract:
Embodiments of a user station (STA) and methods for WLAN channel selection through beacon requests are generally described herein. In some embodiments, a STA requests that an access point (AP) transmit a beacon signal on a first sub-band. The first sub-band may include a channel of interest to the STA. The STA may determine that the AP supports the first sub-band if the AP transmits the requested beacon signal.
Abstract:
In one embodiment, an apparatus of a wireless communication device includes control circuitry to cause receiver circuitry of the wireless communication device to switch between an on-mode and an off-mode. The apparatus also includes synchronizing circuitry to: perform a correlation on signals of a packet received by the receiver circuitry when in the on-mode to detect a pattern in the received signals, and cause the control circuitry to hold the receiver circuitry in the on-mode based on detection of the pattern in the received signals. The apparatus further includes demodulation circuitry to process additional signals of the packet received by the receiver circuitry when held in the on-mode.
Abstract:
For example, an apparatus may include logic and circuitry configured to cause a wireless communication device to maintain active scan configuration information defining a plurality of active scan configurations corresponding to a respective plurality of predefined environment types; to classify a wireless communication channel as a selected environment type from the plurality of predefined environment types based on scan results of at least one first active scan over the wireless communication channel; and to perform at least one second active scan over the wireless communication channel according to a selected active scan configuration corresponding to the selected environment type.
Abstract:
For example, a wireless communication receiver may be configured to switch one or more RF components of the receiver between an on-state and an off-state based on at least one detection criterion for preamble detection of a frame preamble by a preamble detector of the receiver, switching the one or more RF components between the on-state and the off-state including switching the one or more RF components from the on-state to the off-state based on determination that the at least one detection criterion is not met, and switching the one or more RF components from the off-state to the on-state after an off-state period, wherein a duration of the off-state period is based at least on a preamble duration of the frame preamble; and to repeat switching the one or more RF components between the on-state and the off-state until the frame preamble is detected by the preamble detector.