Wrap-around contact structures for semiconductor nanowires and nanoribbons

    公开(公告)号:US11527640B2

    公开(公告)日:2022-12-13

    申请号:US16238978

    申请日:2019-01-03

    Abstract: Wrap-around contact structures for semiconductor nanowires and nanoribbons, and methods of fabricating wrap-around contact structures for semiconductor nanowires and nanoribbons, are described. In an example, an integrated circuit structure includes a semiconductor nanowire above a first portion of a semiconductor sub-fin. A gate structure surrounds a channel portion of the semiconductor nanowire. A source or drain region is at a first side of the gate structure, the source or drain region including an epitaxial structure on a second portion of the semiconductor sub-fin, the epitaxial structure having substantially vertical sidewalls in alignment with the second portion of the semiconductor sub-fin. A conductive contact structure is along sidewalls of the second portion of the semiconductor sub-fin and along the substantially vertical sidewalls of the epitaxial structure.

    Channel structures with sub-fin dopant diffusion blocking layers

    公开(公告)号:US11521968B2

    公开(公告)日:2022-12-06

    申请号:US16024671

    申请日:2018-06-29

    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, integrated circuit structures having channel structures with sub-fin dopant diffusion blocking layers are described. In an example, an integrated circuit structure includes a fin having a lower fin portion and an upper fin portion. The lower fin portion includes a dopant diffusion blocking layer on a first semiconductor layer doped to a first conductivity type. The upper fin portion includes a portion of a second semiconductor layer, the second semiconductor layer on the dopant diffusion blocking layer. An isolation structure is along sidewalls of the lower fin portion. A gate stack is over a top of and along sidewalls of the upper fin portion, the gate stack having a first side opposite a second side. A first source or drain structure at the first side of the gate stack.

    Gate-all-around integrated circuit structures having self-aligned source or drain undercut for varied widths

    公开(公告)号:US11276691B2

    公开(公告)日:2022-03-15

    申请号:US16134824

    申请日:2018-09-18

    Abstract: Gate-all-around integrated circuit structures having self-aligned source or drain undercut for varied widths are described. In an example, a structure includes first and second vertical arrangements of nanowires above a substrate, the nanowires of the second vertical arrangement of nanowires having a horizontal width greater than a horizontal width of the nanowires of the first vertical arrangement of nanowires. First and second gate stack portions are over the first and second vertical arrangements of nanowires, respectively. First embedded epitaxial source or drain regions are at ends of the first vertical arrangement of nanowires and extend beneath dielectric sidewalls spacers of the first gate stack portion by a first distance. Second embedded epitaxial source or drain regions are at ends of the second vertical arrangement of nanowires and extend beneath the dielectric sidewalls spacers of the second gate stack portion by a second distance substantially the same as the first distance.

    Epitaxial oxide plug for strained transistors

    公开(公告)号:US11251302B2

    公开(公告)日:2022-02-15

    申请号:US16640465

    申请日:2017-09-27

    Abstract: Epitaxial oxide plugs are described for imposing strain on a channel region of a proximate channel region of a transistor. The oxide plugs form epitaxial and coherent contact with one or more source and drain regions adjacent to the strained channel region. The epitaxial oxide plugs can be used to either impart strain to an otherwise unstrained channel region (e.g., for a semiconductor body that is unstrained relative to an underlying buffer layer), or to restore, maintain, or increase strain within a channel region of a previously strained semiconductor body. The epitaxial crystalline oxide plugs have a perovskite crystal structure in some embodiments.

    Integrated nanowire and nanoribbon patterning in transistor manufacture

    公开(公告)号:US11164790B2

    公开(公告)日:2021-11-02

    申请号:US16632319

    申请日:2017-08-17

    Abstract: Fabrication of narrow and wide structures based on lithographic patterning of exclusively narrow mask structures. Multi-patterning may be employed to define narrow mask structures. Wide mask structures may be derived through a process-based merging of multiple narrow mask structures. The merge may include depositing a cap layer over narrow structures, filling in minimum spaces. The cap layer may be removed leaving residual cap material only within minimum spaces. Narrow and wide structures may be etched into an underlayer based on a summation of the narrow mask structures and residual cap material. A plug pattern may further mask portions of the cap layer not completely filling space between adjacent mask structures. The underlayer may then be etched based on a summation of the narrow mask structures, plug pattern, and residual cap material. Such methods may be utilized to integrate nanoribbon transistors with nanowire transistors in an integrated circuit (IC).

    INTEGRATED NANOWIRE & NANORIBBON PATTERNING IN TRANSISTOR MANUFACTURE

    公开(公告)号:US20200176321A1

    公开(公告)日:2020-06-04

    申请号:US16632319

    申请日:2017-08-17

    Abstract: Fabrication of narrow and wide structures based on lithographic patterning of exclusively narrow mask structures. Multi-patterning may be employed to define narrow mask structures. Wide mask structures may be derived through a process-based merging of multiple narrow mask structures. The merge may include depositing a cap layer over narrow structures, filling in minimum spaces. The cap layer may be removed leaving residual cap material only within minimum spaces. Narrow and wide structures may be etched into an underlayer based on a summation of the narrow mask structures and residual cap material. A plug pattern may further mask portions of the cap layer not completely filling space between adjacent mask structures. The underlayer may then be etched based on a summation of the narrow mask structures, plug pattern, and residual cap material. Such methods may be utilized to integrate nanoribbon transistors with nanowire transistors in an integrated circuit (IC).

    SUB-FIN ISOLATION SCHEMES FOR GATE-ALL-AROUND TRANSISTOR DEVICES

    公开(公告)号:US20200044087A1

    公开(公告)日:2020-02-06

    申请号:US16055634

    申请日:2018-08-06

    Abstract: Sub-fin isolation schemes for gate-all-around (GAA) transistor devices are provided herein. In some cases, the sub-fin isolation schemes include forming one or more dielectric layers between each of the source/drain regions and the substrate. In some such cases, the one or more dielectric layers include material native to the gate sidewall spacers, for example, or other dielectric material. In other cases, the sub-fin isolation schemes include substrate modification that results in oppositely-type doped semiconductor material under each of the source/drain regions and in the sub-fin. The oppositely-type doped semiconductor material results in the interface between that material and each of the source/drain regions being a p-n or n-p junction to block the flow of carriers through the sub-fin. The various sub-fin isolation schemes described herein enable better short channel characteristics for GAA transistors (e.g., employing one or more nanowires, nanoribbons, or nanosheets), thereby improving device performance.

Patent Agency Ranking