Abstract:
A method for fabricating a liquid crystal display device including a TFT substrate having an alignment film formed thereon, an opposing substrate, and a liquid crystal layer sandwiched therebetween. The alignment film on the TFT substrate includes a photolytic polymer made from a first precursor including cyclobutane, and a non-photolytic polymer made from a second precursor. The method includes the steps of depositing a mixture material including the first precursor and the second precursor in which the second precursor settles more on an upper surface of the TFT substrate than the first precursor, imidizing the mixture material, and irradiating the mixture material with ultraviolet light for photo-alignment, and after irradiating, heating the mixture material to form the alignment film.
Abstract:
A liquid crystal display device has a liquid crystal display panel including pixels each having an active device, a pixel electrode, a common electrode and a liquid crystal layer arranged in a dot matrix array. The liquid crystal display panel has a first substrate, a second substrate, and a liquid crystal layer provided between the first substrate and the second substrate. The first substrate has the active device, the pixel electrode, the common electrode and a first alignment film. The second substrate has a second alignment film. The first alignment film and the second alignment film are respectively a photo alignment film formed by irradiating a photo decomposition type insulating film with light. The second alignment film has a thickness of at least 10 nm and no greater 50 nm and is thinner than the first alignment film.
Abstract:
A liquid crystal display device includes a TFT substrate and a counter substrate on each of which an alignment film is formed and a liquid crystal interposed and held between the alignment films of the TFT and counter substrate, wherein the alignment film is made of a material capable of applying liquid crystal alignment regulation force by polarized light irradiation, a convex structure is formed on the TFT substrate or the counter substrate, and the alignment film is applied the liquid crystal alignment regulation force to a surface of a region ranging from the periphery of the convex structure to the vicinity of an inclined part of the convex structure and is not applied the liquid crystal alignment regulation force to a surface of the inclined part of the convex structure.
Abstract:
A liquid crystal display device includes a liquid crystal composition, a thin film transistor substrate as an insulation substrate on which a thin film transistor for controlling the orientation of the liquid crystal composition is provided, and a color filter substrate which seals the liquid crystal composition between itself and the thin film transistor substrate and controls a wavelength region of the transmitted light. The thin film transistor substrate includes a projection part extending from the thin film transistor substrate to the color filter substrate side, and a wall-like electrode on a wall surface of the projection part, which is one electrode for controlling the orientation of the liquid crystal composition. An insulation film and an orientation film are sequentially laminated on the wall-like electrode continuously from a surface parallel to a substrate surface.
Abstract:
In a liquid crystal display device including: TFT substrate; color filter; counter electrode; interlayer insulation film; pixel electrode; alignment film; liquid crystal layer; counter substrate; and Si semiconductor layer. The color filter, counter electrode, interlayer insulation film, pixel electrode, and alignment film being formed on the side where the TFT substrate is provided, the counter substrate being disposed in facing relation to the TFT substrate with the liquid crystal layer put between the counter substrate and TFT substrate, the Si semiconductor layer is formed between the pixel electrode and interlayer insulation film. Even when light from a backlight is absorbed by the color filter and sufficient light cannot reach the alignment film, electric charges accumulated on the alignment film can escape to the pixel electrode in an early stage by the Si semiconductor layer formed under the alignment film, thereby capable of erasing the afterimage in an early stage.
Abstract:
In a liquid crystal display device, a light shielding film, a color filter, an overcoat film, and an alignment film are formed in this order on a counter substrate. However, the alignment film is not formed in a seal portion. When the alignment film is subjected to photo-alignment with ultraviolet radiation, a portion of the overcoat film not covered with the alignment film is degraded by ultraviolet radiation. In order to prevent moisture penetrating from the degraded overcoat film from reaching the light shielding film to thereby alter the light shielding film and from causing the peeling of the light shielding film, the color filter is disposed below the overcoat film to block the moisture.
Abstract:
A liquid crystal display device has a liquid crystal display panel including pixels each having an active device, a pixel electrode, a common electrode and a liquid crystal layer arranged in a dot matrix array. The liquid crystal display panel has a first substrate, a second substrate, and a liquid crystal layer provided between the first substrate and the second substrate. The first substrate has the active device, the pixel electrode, the common electrode and a first alignment film. The second substrate has a second alignment film. The first alignment film and the second alignment film are respectively a photo alignment film formed by irradiating a photo decomposition type insulating film with light. The second alignment film has a thickness of at least 10 nm and no greater 50 nm and is thinner than the first alignment film.
Abstract:
The present invention provides a liquid crystal display device in which even in the case of using a photo-alignment technique, excellent afterimage characteristics can be stably obtained.Provided is a liquid crystal display device including a TFT substrate having an alignment film, an opposed substrate which is arranged to face the TFT substrate and on which an alignment film is formed, and a liquid crystal layer sandwiched between the alignment films, wherein the alignment films are materials that can provide a liquid crystal alignment restraining force by irradiating polarized light, and the ratio of oxygen atoms on the surface of the alignment film is higher than that in the alignment film.
Abstract:
A liquid crystal display device in a lateral electric field mode includes: a metal wiring formed on a transparent substrate; an inorganic insulating film and an organic insulating film formed on the metal wiring; and a first transparent electrode and a second transparent electrode formed on the inorganic insulating film and the organic insulating film so that the first and the second transparent electrodes are opposite to each other through an interlayer insulating film. The film thickness of the organic insulating film on the metal wiring is made thicker than the film thickness of the organic insulating film inside a pixel display region including the contact hole, and a projecting portion of the organic insulating film is formed on the metal wiring. A pixel electrode formed of the first electrode or the second electrode is formed on an image display region including a slope portion of the projecting portion.