Abstract:
An asymmetrical drive motor and apparatus with the asymmetric drive motor driving a barrier. The asymmetric drive motor drives the barrier at different drive powers according to direction, time of travel, safety requirements of speed. The drive power is controlled by electrically changing the capacitance value for a permanent split capacitor motor.
Abstract:
An electronic service reminder to automatically notify a user as to when and what type of maintenance should be performed on the garage door operator, based on a variety of factors, including time, materials and operating environment. The garage door operator is configured to automatically generate an electronic service reminder in the form of an audible or visual alert based on one or more operating parameters of the garage door operator meeting or exceeding a predefined threshold. The predefined threshold is variable based on the values of the operating parameters.
Abstract:
A wireless transmit-only apparatus (20) has a controller (21) that responds to a user interface 25 by correlating specific user input with a corresponding characterizing transmission parameter(s) as is stored in a memory (35) and by selecting a corresponding resonant device (31 and 32). The latter devices serve to drive the PLL control input of a phase locked loop (23) to thereby influence the transmission carrier frequency of a wireless transmitter (22). In a preferred embodiment, at least one of the resonant devices comprises a mechanically resonant device such as a surface acoustic wave device, a crystal resonator, or a ceramic resonator.
Abstract:
Upon providing (101) message content (such as a remote control instruction) to be transmitted, and in conjunction with provision (102) of a plurality of different transmission characteristics (as correspond, for example, to different types of transmission) and a corresponding plurality of correlated recovery identifiers (103), a particular transmission characteristic is selected (104) and used to transmit (105) a joint message. n particular, in a preferred approach, the selected transmission characteristic (106) is used when transmitting at least a portion of the message content portion of the joint message while another part of the joint message carries the recovery identifier to thereby facilitate selection of an appropriate reception technique by a receiver when receiving the joint message.
Abstract:
A moveable barrier operator that is used as a repeater includes a receiver device having an input, a transmitter device having an output, an apparatus responsive to predetermined signals received by the receiver for controlling the position of a barrier; and a controller. The controller is coupled to the receiver device and the transmitter device and controller is programmed to receive a signal from a signaling actuation device at the input of the receiver device. The controller is programmed to responsively re-transmit the signal to at least one other moveable barrier operator from the output of the transmitter device when indicated by the signal.
Abstract:
In a barrier movement operator comprising a controller hard-wire connected to a first safety sensor, it is determined whether a second safety sensor has been wirelessly connected to the controller. When it is determined that the second safety sensor has been wirelessly connected to the controller, the operator is operated according to a first predetermined procedure. On the other hand, when it is determined that the second safety sensor has not been wirelessly connected to the controller, the operator is operated according to a second predetermined procedure.
Abstract:
A rolling code transmitter is useful in a security system for providing secure encrypted RF transmission comprising an interleaved trinary bit fixed code and rolling code. A receiver demodulates the encrypted RF transmission and recovers the fixed code and rolling code. Upon comparison of the fixed and rolling codes with stored codes and determining that the signal has emanated from an authorized transmitter, a signal is generated to actuate an electric motor to open or close a movable barrier.
Abstract:
A movable barrier operator system operational component includes an integral display comprising at least one of a numeric display, an alphanumeric display, and a graphics display. The display can comprise an active display or an active interactive display and can further operate in conjunction with adjacent user-input interface opportunities. So configured, numerous user interface events can be highly leveraged to contribute to ease of installation and ease and reliability of use.
Abstract:
A movable barrier operator system (10) having a movable barrier operator (11) and a wireless remote control (13) also has an automatic image recognizer (14) operably coupled to at least one of the preceding elements. In a preferred embodiment this automatic image recognizer comprises one or more image capture device (15). So configured, automated operational control decisions can be predicated, at least in part, on image-based information regarding a likely relative position of the wireless remote control with respect to the movable barrier operator.
Abstract:
A barrier movement operator with a backup source of DC power is disclosed. The power supply of the barrier movement operator sends current limited DC to the backup which uses the DC to charge a battery. The battery is in circuit at all times with the barrier movement operator power supply by means of a power diode and, when an AC mains power failure occurs, DC power is sent from the battery to power the barrier movement operator.