摘要:
A method for forming an electrostatic discharge device using silicon-on-insulator technology is described. An N-well is formed within a silicon semiconductor substrate. A P+ region is implanted within a portion of the N-well and an N+ region is implanted within a portion of the semiconductor substrate not occupied by the N-well. An oxide layer is formed overlying the semiconductor substrate and patterned to form openings to the semiconductor substrate. An epitaxial silicon layer is grown within the openings and overlying the oxide layer. Shallow trench isolation regions are formed within the epitaxial silicon layer extending to the underlying oxide layer. Gate electrodes and associated source and drain regions are formed in and on the epitaxial silicon layer between the shallow trench isolation regions. An interlevel dielectric layer is deposited overlying the gate electrodes. First contacts are opened through the interlevel dielectric layer to the underlying source and drain regions. The interlevel dielectric layer is covered with a mask that covers the first contact openings. Second contact openings are opened through the interlevel dielectric layer, shallow trench isolations, and the oxide layer to the N+ region and P+ region. The mask is removed. The first and second contact openings are filled with a conducting layer to complete formation of an ESD device.
摘要:
A new method of fabricating a sub-quarter micron MOSFET device is achieved. A semiconductor substrate is provided. Isolation regions are formed in this substrate. An oxide layer is provided overlying both the substrate and the isolation regions. The oxide layer is patterned and etched exposing two regions of the substrate. A selective epitaxial growth (SEG) is performed with in situ doping covering the two exposed substrate regions formed during the previous step. The doped SEG regions will form the source and drain contact regions of the MOSFET. The oxide layer region between the two doped SEG regions is then patterned and etched away exposing the substrate. This is followed by a gate oxide formation and either a polysilicon or metal gate deposition. Planarization is then performed on the surface to facilitate interconnection later in the process and to form the final gate structure. Thermal energy provided from processing steps or from a rapid thermal anneal (RTA) allows the doping atoms in the SEG regions to diffuse into the substrate thereby forming the active source/drain regions. This method allows precise control of the doping profile in the active source/drain region. An interlevel dielectric is then deposited over the entire surface. Contact holes are then etched in the interlevel dielectric and metalization patterned to allow interconnection to the completed MOSFET device.
摘要:
A method for fabricating a metal-oxide-metal capacitor is described. A first insulating layer is provided overlying a semiconductor substrate. A barrier metal layer and a first metal layer are deposited over the insulating layer. A titanium layer is deposited overlying the first metal layer. The titanium layer is exposed to an oxidizing plasma while simultaneously a portion of the titanium layer where the metal-oxide-metal capacitor is to be formed is exposed to light whereby the portion of the titanium layer exposed to light reacts with the oxidizing plasma to form titanium oxide. Thereafter, the titanium layer is removed, leaving the titanium oxide layer where the metal-oxide-metal capacitor is to be formed. A second metal layer is deposited overlying the first metal layer and the titanium oxide layer. The second metal layer, titanium oxide layer, and first metal layer are patterned to form a metal-oxide-metal capacitor wherein the second metal layer forms an upper plate electrode, the titanium oxide layer forms a capacitor dielectric, and the first metal layer forms a bottom plate electrode of the MOM capacitor.
摘要:
A process for forming a high dielectric constant, (High K), layer, for a metal-oxide-metal, capacitor structure, featuring localized oxidation of an underlying metal layer, performed at a temperature higher than the temperature experienced by surrounding structures, has been developed. A first iteration of this process features the use of a laser ablation procedure, performed to a local region of an underlying metal layer, in an oxidizing ambient. The laser ablation procedure creates the desired, high temperature, only at the laser spot, allowing a high K layer to be created at this temperature, while the surrounding structures on a semiconductor substrate, not directly exposed to the laser ablation procedure remain at lower temperatures. A second iteration features the exposure of specific regions of an underlying metal layer, to a UV, or to an I line exposure procedure, performed in an oxidizing ambient, with the regions of an underlying metal layer exposed to the UV or I line procedure, via clear regions in an overlying photolithographic plate. This procedure also results in the formation of a high K layer, on a top portion of the underlying metal layer.
摘要:
A method of fabricating an SOI transistor device comprises the following steps. a silicon semiconductor structure is provided. A silicon oxide layer is formed over the silicon semiconductor structure. A silicon-on-insulator layer is formed over the oxide layer. A well is implanted in the silicon-on-insulator layer. A gate oxide layer is grown over the silicon-on-insulator layer. A polysilicon layer is deposited over the gate oxide layer. The polysilicon layer, gate oxide layer, and silicon oxide layer are patterned and etched to form trenches. The trenches are filled with an isolation material to at least a level even with a top surface of the polysilicon layer to form raised shallow trench isolation regions (STIs). The polysilicon layer is patterned and the non-gate portions are removed polysilicon adjacent the raised STIs forming a gate conductor between the raised STIs with the gate conductor and said raised STIs having exposed sidewalls. The gate oxide layer is removed between the gate conductor and the raised STIs, and outboard of the raised STIs. The source and drain are formed in the silicon-on-insulator layer adjacent the gate spacers. Silicide regions may then be formed on the source and drain.
摘要:
A method of fabricating a MOS device having raised source/drain, raised isolation regions having isolation spacers, and a gate conductor having gate spacers is achieved. A layer of gate silicon oxide is grown over the surface of a semiconductor structure. A polysilicon layer is deposited overlying the gate silicon oxide layer. The polysilicon layer, gate silicon oxide layer and semiconductor structure are patterned and etched to form trenches. The trenches are filled with an isolation material to at least a level even with a top surface of the polysilicon layer to form raised isolation regions. The remaining polysilicon layer is patterned to remove polysilicon adjacent the raised isolation regions forming a gate conductor between the raised isolation regions. The gate conductor and the raised isolation regions having exposed sidewalls. The gate oxide layer between the gate conductor and raised isolation regions is removed. Isolation spacers are formed on the exposed sidewalls of the raised isolation regions and gate spacers are formed on the exposed sidewalls of the gate conductor. A layer of silicon is deposited and patterned to form raised source and drain adjacent the gate spacers with source and drain being doped to form a MOS device.
摘要:
An integration approach to improve electromigration resistance in a semiconductor device is described. A via hole is formed in a stack that includes an upper dielectric layer, a middle TiN ARC, and a lower first metal layer and is filled with a conformal diffusion barrier layer and a second metal layer. A key feature is that the etch process can be selected to vary the shape and location of the via bottom. A round or partially rounded bottom is formed in the first metal layer to reduce mechanical stress near the diffusion barrier layer. On the other hand, a flat bottom which stops on or in the TiN ARC is selected when exposure of the first metal layer to subsequent processing steps is a primary concern. Electromigration resistance is found to be lower than for a via structure with a flat bottom formed in a first metal layer.
摘要:
An integration approach to improve electromigration resistance in a semiconductor device is described. A via hole is formed in a stack that includes an upper dielectric layer, a middle TiN ARC, and a lower first metal layer and is filled with a conformal diffusion barrier layer and a second metal layer. A key feature is that the etch process can be selected to vary the shape and location of the via bottom. A round or partially rounded bottom is formed in the first metal layer to reduce mechanical stress near the diffusion barrier layer. On the other hand, a flat bottom which stops on or in the TiN ARC is selected when exposure of the first metal layer to subsequent processing steps is a primary concern. Electromigration resistance is found to be lower than for a via structure with a flat bottom formed in a first metal layer.
摘要:
An integration approach to improve electromigration resistance in a semiconductor device is described. A via hole is formed in a stack that includes an upper dielectric layer, a middle TiN ARC, and a lower first metal layer and is filled with a conformal diffusion barrier layer and a second metal layer. A key feature is that the etch process can be selected to vary the shape and location of the via bottom. A round or partially rounded bottom is formed in the first metal layer to reduce mechanical stress near the diffusion barrier layer. On the other hand, a flat bottom which stops on or in the TiN ARC is selected when exposure of the first metal layer to subsequent processing steps is a primary concern. Electromigration resistance is found to be lower than for a via structure with a flat bottom formed in a first metal layer.
摘要:
An integration approach to improve electromigration resistance in a semiconductor device is described. A via hole is formed in a stack that includes an upper dielectric layer, a middle TiN ARC, and a lower first metal layer and is filled with a conformal diffusion barrier layer and a second metal layer. A key feature is that the etch process can be selected to vary the shape and location of the via bottom. A round or partially rounded bottom is formed in the first metal layer to reduce mechanical stress near the diffusion barrier layer. On the other hand, a flat bottom which stops on or in the TiN ARC is selected when exposure of the first metal layer to subsequent processing steps is a primary concern. Electromigration resistance is found to be lower than for a via structure with a flat bottom formed in a first metal layer.