摘要:
The present invention relates to an efficient production method of xylitol by using the xylitol producing microorganism introduced with arabinose metabolic pathway to inhibit the production of arabitol, the byproduct, and instead to use arabinose only for cell metabolism in xylose/arabinose mixed medium. More precisely, to express efficiently L-arabinose isomerase (araA), L-ribulokinase (araB) and L-ribulose-5-phosphate 4-epimerase (araD) in Candida tropicalis, codon optimization was performed. Then, each gene was inserted in the gene expression cassette containing the glyceraldehyde-3-phosphate dehydrogenase promoter and the selection marker URA3, which was introduced into Candida sp. microorganism. As a result, arabitol, the byproduct interrupting the purification and crystallization of xylitol could be inhibited, making the production method of xylitol of the present invention more efficient. The xylitol producing microorganism introduced with arabinose metabolic pathway of the present invention can be effectively used for the production of xylitol with high productivity by inhibiting the generation of arabitol.
摘要:
Disclosed herein are Xylitol dehydrogenase-inactivated and arabinose reductase-inhibited mutant of Candida tropicalis, a method of producing a high yield of xylitol using the same, and xylitol produced by the method. More specifically, disclosed are a method for producing a high yield of xylitol, in which a high concentration of xylose contained in a biomass hydrolyzate is converted to xylitol using xylitol dehydrogenase-inactivated mutant of Candida tropicalis, without controlling dissolved oxygen to a low level, as well as xylitol produced according to the method. Also disclosed are a xylitol production method, in which the production of byproduct arabitol, which is produced when using a biomass as a substrate and adversely affects the yield of xylitol, is significantly reduced through the use of Candida tropicalis mutant ara-89 (KCTC 11136bp) having an inhibited activity of arabinose reductase converting arabinose to arabitol, thus increasing xylitol productivity, as well as xylitol produced by the method.
摘要:
The present disclosure relates to a method for preparing recombinant glycoproteins with high sialic acid content. More specifically, for UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE/MNK) enzyme where point mutation was induced by substituting arginine at position 263 by leucine only or by further substituting arginine at position 266 by glutamine, epimerase activity is constantly maintained, and overexpressed cells thereof experience an increase in intracellular cytidine monophosphate (CMP)-sialic acid content, irrespective of CMP-sialic acid concentration. Particularly, since in an glycoprotein (such as, erythropoietin and thrombopoietin)-producing host cell where point mutationinduced GNE/MNK, human alpha-2,3-sialyltransferase and a CMP-sialic acid transporter gene are simultaneously overexpressed, intracellular content of CMP-sialic acid and sialic acid in glycoprotein increases in cells, overexpression in a host cell producing a sialylated recombinant glycoprotein the three genes above may be useful for preparing glycoprotein with increased sialic acid content.
摘要:
The present disclosure relates to a method for preparing recombinant glycoproteins with high sialic acid content. More specifically, for UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE/MNK) enzyme where point mutation was induced by substituting arginine at position 263 by leucine only or by further substituting arginine at position 266 by glutamine, epimerase activity is constantly maintained, and overexpressed cells thereof experience an increase in intracellular cytidine monophosphate (CMP)-sialic acid content, irrespective of CMP-sialic acid concentration. Particularly, since in an glycoprotein(such as, erythropoietin and thrombopoietin)-producing host cell where point mutationinduced GNE/MNK, human alpha-2,3-sialyltransferase and a CMP-sialic acid transporter gene are simultaneously overexpressed, intracellular content of CMP-sialic acid and sialic acid in glycoprotein increases in cells, overexpression in a host cell producing a sialylated recombinant glycoprotein the three genes above may be useful for preparing glycoprotein with increased sialic acid content.
摘要:
The present invention relates to an efficient production method of xylitol by using the xylitol producing microorganism introduced with arabinose metabolic pathway to inhibit the production of arabitol, the byproduct, and instead to use arabinose only for cell metabolism in xylose/arabinose mixed medium. More precisely, to express efficiently L-arabinose isomerase (araA), L-ribulokinase (araB) and L-ribulose-5-phosphate 4-epimerase (araD) in Candida tropicalis, codon optimization was performed. Then, each gene was inserted in the gene expression cassette containing the glyceraldehyde-3-phosphate dehydrogenase promoter and the selection marker URA3, which was introduced into Candida sp. microorganism. As a result, arabitol, the byproduct interrupting the purification and crystallization of xylitol could be inhibited, making the production method of xylitol of the present invention more efficient. The xylitol producing microorganism introduced with arabinose metabolic pathway of the present invention can be effectively used for the production of xylitol with high productivity by inhibiting the generation of arabitol.