Abstract:
When a control circuit detects from a signal CPO4 that a battery voltage is less than a sixth reference voltage, a constant current operation in VFM control is performed with respect to a switching transistor and a synchronous rectification transistor in accordance with signals RVDET and CPO3. Furthermore, when the control circuit detects from the signal CPO4 that the battery voltage becomes equal to or greater than the sixth reference voltage, the constant current operation in PWM control is performed in accordance with a signal CPO2. When an output signal CVDET from a constant current/constant voltage switching detection circuit becomes high level, operation control with respect to the switching transistor and the synchronous rectification transistor is switched from the PWM control of constant current operations to the PWM control of constant voltage operations in accordance with a signal CPO1.
Abstract:
A charging apparatus for charging a plurality of detachable battery packs includes a charging device for charging the plurality of battery packs one after another. A monitoring device is included to monitor attachment of a battery pack. A memory is included to store attachment history data of a battery pack based upon a monitoring result. A switching device is included to switch from one of the battery packs to the next battery pack. A voltage detecting device is included to detect a voltage of the next battery pack before charging. A charging manner setting device is included to set any one of constant current charging and constant voltage charging in accordance with the detected voltage. A charge current detecting device is also included to detect a current during charging of the next battery pack.
Abstract:
A step-down DC-to-DC converter includes an input terminal, an output terminal, a switching transistor, and a rectifying transistor. The switching circuit is connected between the input terminal and the output terminal and is configured to reduce an input voltage down to a predetermined voltage and to output the predetermined voltage from the output terminal to an external load. The series circuit includes a switching transistor and an inductor. The switching transistor is connected between the input terminal and the inductor, and is configured to perform a switching operation. The inductor is connected between the switching transistor and the output terminal. The rectifying transistor includes a P-type transistor and connected between a connected point between the switching transistor and a common ground. The rectifying transistor has a gate connected to the connected point.
Abstract:
A current detector circuit for detecting a load current flowing through a load includes a first series circuit having a first element and the load connected in series, a second series circuit having a second element and a resistor connected in series, the second element having a temperature characteristic equal to the temperature characteristic of the resistance of the first element, a power supply configured to supply voltage to the first series circuit and the second series circuit, and a control circuit configured to control the voltage drop across the second element so that the voltage drop across the second element is equal to the voltage drop across the first element. A current detection signal corresponding to the load current is generated based on a current flowing through the second element.
Abstract:
A CMC-type switching regulator is disclosed that includes: a switching element switching to control outputting of input voltage; a smoothing circuit outputting the smoothed output voltage of the switching element to an output terminal; a voltage divider dividing the output voltage; an error amplifier amplifying the difference between reference voltage and the divided voltage; a slope voltage generator generating slope voltage according to the reference voltage, correcting the slope of the slope voltage in accordance with the input-output voltage difference, detecting current flowing through the switching element and generating voltage according to the detected current, and outputting the generated voltage and the corrected slope voltage; a pulse generator outputting a pulse signal having time width according to the output voltages of the error amplifier and the slope voltage generator; and a switching controller controlling the switching of the switching element in accordance with the output signal of the pulse generator.
Abstract:
A switching regulator that includes a switching transistor configured to control an output current by switching, a proportional current generator configured to generate a current proportional to a current flowing through the switching transistor, a first slope voltage generator configured to generate a linear slope voltage, a second slope voltage generator configured to generate a slope voltage having a secondary curve characteristic by integrating the current proportional to the current flowing through the switching transistor, and a slope voltage compensation circuit to generate a superimposed slope voltage formed by superimposing an output voltage of the first slope voltage generator on an output voltage of the second slope voltage generator.
Abstract:
A disclosed switching regulator converts an input voltage to an output voltage of a predetermined level and outputs the output voltage. The disclosed switching regulator includes a switching transistor configured to be turned on and off according to a control signal; an inductor configured to be charged by the input voltage when the switching transistor is turned on; a mode switching circuit configured to generate a switching signal for switching a control mode of the switching transistor between a PWM control mode and a VFM control mode; and a control circuit configured to control the switching transistor in the PWM control mode or the VFM control mode depending on the switching signal from the mode switching circuit so that the output voltage is maintained at the predetermined level.
Abstract:
A switching regulator that includes an inductor, a first step-down switch to store charge in the inductor, a second step-down switch to discharge the charge, a first step-up switch to store charge in the inductor, a second step-up switch to discharge the charge, a reverse current detector to detect a reverse current from an output terminal to the inductor through the second step-up switch, or an indication of the reverse current, based on a detection voltage, and a controller to control the first and second step-down switches, and the first and second step-up switches to output a predetermined constant voltage, and to shut off the second step-up switch to make shutdown condition when the detector detects the reverse current or an indication of the reverse current. The reverse current detector may have a threshold value in the step-down operation that is different from a threshold value in the step-up operation.
Abstract:
This patent specification describes a DC-DC converter which includes a switch configured to control an output voltage, a driver circuit configured to drive the switch, a flip-flop configured to control the driver circuit, an error amplifier configured to compare a feedback voltage of the output voltage with a reference voltage, a detector configured to sense an output current, a control voltage generator configured to generate a control voltage being ramped and a PWM comparator configured to compare the control voltage with an output voltage of the error amplifier and output a reset signal to the flip-flop. Ramping speed of the control voltage is changed in accordance with an external-control voltage input at an external-control terminal.
Abstract:
A switching regulator is disclosed that is able to prevent reverse direction current flow without using a dedicated diode even when a PMOS transistor is used as a switching transistor of a step-down switching regulator. A selection circuit is provided to control connection of the substrate gate of the switching transistor, and a control circuit controls the selection circuit to connect the substrate gate to the drain of the switching transistor when the voltage on an input terminal of the switching regulator is less than or equal to the voltage on the output terminal of the switching regulator, and connect the substrate gate to the source of the switching transistor when the voltage on the input terminal is greater than the voltage on the output terminal.