Abstract:
A charging circuit includes a power path control unit which switches a first switch connected between a system connection terminal and a battery connection terminal on while not charging, and switches the first switch on and a second switch connected between an external power supply input terminal and the system connection terminal on while charging so as to supply power to a system and charge a battery. A voltage difference between the external power supply input terminal and the battery connection terminal is detected, a current flowing between the external power supply input terminal and the system connection terminal is detected, and it is determined that an external power supply is disconnected based on the detection results of the voltage differences and the current.
Abstract:
A DC-DC converter control circuit, to control a DC-DC converter having an inductor and two switches, including a first feedback circuit; a second feedback circuit; a synthesis circuit to add a first feedback voltage indicating a DC component of an inductor current based on an output current of the DC-DC converter and a second feedback voltage indicating an AC component thereof to generate a third feedback voltage; a comparator to compare the third feedback voltage with a reference voltage to output a comparison result; and an on-time adjusting circuit to adjust on/off time of the switches based on the comparison result for outputting a control signal depending on the adjusting result. The second feedback voltage is generated based on a difference between input and output voltages of the DC-DC converter when the control signal is low and based on the output voltage when the control signal is high.
Abstract:
A switching regulator that includes an inductor, a first step-down switch to store charge in the inductor, a second step-down switch to discharge the charge, a first step-up switch to store charge in the inductor, a second step-up switch to discharge the charge, a reverse current detector to detect a reverse current from an output terminal to the inductor through the second step-up switch, or an indication of the reverse current, based on a detection voltage, and a controller to control the first and second step-down switches, and the first and second step-up switches to output a predetermined constant voltage, and to shut off the second step-up switch to make shutdown condition when the detector detects the reverse current or an indication of the reverse current. The reverse current detector may have a threshold value in the step-down operation that is different from a threshold value in the step-up operation.
Abstract:
A device for detecting an abnormal connection status of a load connected between a first connection terminal and a second connection terminal is disclosed. An abnormal connection detecting circuit includes a first transistor configured to receive a predetermined first bias voltage, and output a current according to a voltage of the second connection terminal; and an abnormality detector configured to detect the current output from the first transistor, and detect the abnormal connection status based on the detected current.
Abstract:
This patent specification describes a DC-DC converter which includes a switch configured to control an output voltage, a driver circuit configured to drive the switch, a flip-flop configured to control the driver circuit, an error amplifier configured to compare a feedback voltage of the output voltage with a reference voltage, a detector configured to sense an output current, a control voltage generator configured to generate a control voltage being ramped and a PWM comparator configured to compare the control voltage with an output voltage of the error amplifier and output a reset signal to the flip-flop. Ramping speed of the control voltage is changed in accordance with an external-control voltage input at an external-control terminal.
Abstract:
A voltage rising/falling type switching regulator includes an inductor, a voltage-falling switching element, a voltage-falling rectifier element, a voltage-rising switching element, a voltage-rising synchronous rectification switching element, a control circuit part, and a reverse current detecting part. The control circuit part is arranged so that the voltage-falling switching element is switched ON and set in a conduction state at the time of voltage-rising operation, and the voltage-rising synchronous rectification switching element is switched ON and set in a conduction state at the time of voltage-falling operation. If the reverse current detecting part detects a reverse current, the voltage-falling switching element is switched OFF and set in a cut-off state.
Abstract:
A power-supply apparatus for outputting from an output terminal via one or more switching elements, each having a control electrode, a voltage input to an input terminal, is disclosed. The apparatus includes a voltage-generating circuit for generating an output voltage Vo proportional to a voltage between an input end and an output end of the switching element so as to output the generated voltage, and a control circuit for controlling an operation of the switching element depending on the output voltage Vo of the voltage-generating circuit. The control circuit causes the switching element to reduce an output current when the output voltage Vo of the voltage-generating circuit exceeds a predetermined voltage Vs.
Abstract:
A current detector circuit detecting a load current flowing through a load is disclosed. The current detector circuit includes a first series circuit having a first conductor and the load connected in series; a second series circuit having a second conductor and a resistor connected in series, the second conductor having a temperature characteristic equal to the temperature characteristic of the resistance of the first conductor; a power supply configured to supply voltage to the first series circuit and the second series circuit; and a control circuit configured to control the voltage drop across the second conductor so that the voltage drop across the second conductor is equal to the voltage drop across the first conductor. A current detection signal corresponding to the load current is generated based on a current flowing through the second conductor.
Abstract:
A switching regulator is disclosed that is able to prevent reverse direction current flow without using a dedicated diode even when a PMOS transistor is used as a switching transistor of a step-down switching regulator. A selection circuit is provided to control connection of the substrate gate of the switching transistor, and a control circuit controls the selection circuit to connect the substrate gate to the drain of the switching transistor when the voltage on an input terminal of the switching regulator is less than or equal to the voltage on the output terminal of the switching regulator, and connect the substrate gate to the source of the switching transistor when the voltage on the input terminal is greater than the voltage on the output terminal.
Abstract:
A charging circuit for a secondary battery includes a constant-voltage circuit part outputting one of a plurality of predetermined constant voltages and charges the secondary battery by applying the constant voltage thereto, a detection circuit part detecting a battery voltage of the secondary battery, and a control circuit part controlling the selection of the constant-voltage in response to the detected battery voltage. Another charging circuit includes a constant-current circuit part outputting, to the secondary battery, one of two predetermined constant currents, a constant-voltage circuit part charging the secondary battery by applying a predetermined constant voltage thereto, a battery voltage detection circuit part detecting a battery voltage of the secondary battery, a charge current detection circuit part outputting a predetermined charge completion signal, and a charge control circuit part stopping operations of the constant-current circuit part and constant-voltage circuit part when receiving the charge completion signal.