Abstract:
An image acquiring device comprises a first camera 14 for acquiring video images, consisting of frame images continuous in time series, a second camera 15 being in a known relation with the first camera and used for acquiring two or more optical spectral images of an object to be measured, and an image pickup control device 21, and in the image acquiring device, the image pickup control device is configured to extract two or more feature points from one of the frame images, to sequentially specify the feature points in the frame images continuous in time series, to perform image matching between the frame images regarding the frame images corresponding to the two or more optical spectral images based on the feature points, and to synthesize the two or more optical spectral images according to the condition obtained by the image matching.
Abstract:
A rotation angle measuring device provided with a fixed unit and a movable unit relatively rotating with respect to the fixed unit, comprising a light source installed on either one of the fixed unit or the movable unit and for emitting a detection light and a reference position signal light, a polarizing plate for converting a detection light emitted from the light source to a polarized light, a polarized light rotating unit for rotating the polarized light around an optical axis of the light source as the center, a reference position signal light emitted at a reference rotating position of the polarized light, a stationary polarizing plate provided on either one of the fixed unit or the movable unit and to stand still with respect to a rotation of the polarized light, a photodetection sensor provided on the fixed unit or on the movable unit and for receiving the polarized light passing through the stationary polarizing plate and the reference position signal light, and an arithmetic unit for calculating a detection waveform of a change of light amount based on a signal from the photodetection sensor, for detecting the reference position signal light and for calculating a relative rotation angle between the fixed unit and the movable unit from a phase of the detection waveform and a predetermined detection reference phase when the reference position signal light is detected.
Abstract:
A spectral image sensor device comprises a first optical system 47 and 48 including an objective lens, a luminous fluxes selecting member 55 for allowing a part of the luminous fluxes to pass via the first optical system selectively, an optical member 58 where the luminous fluxes selecting member is disposed so as to be at focal position on an object side or approximately at focal position on an object side, and an interference membrane is formed, and wavelength range of the luminous fluxes for passing through the luminous fluxes selecting member is selected, depending on position of the luminous fluxes selecting member, a second optical system 49 for guiding the luminous fluxes toward the optical member, and an image sensor 52 for receiving a light in wavelength range as selected by the optical member.
Abstract:
The aerial photograph image pickup method comprises a first step of acquiring still images along an outward route and a return route respectively, a second step of preparing a stereo-image with regard to three images adjacent to each other in advancing direction, and of preparing another stereo-image by relative orientation on one more set of adjacent images and of preparing two sets of stereo-images, a third step of connecting two sets of stereo-images by using feature points extracted from a portion of an image common to the two sets of stereo-images, a step of connecting all stereo-images in the outward route direction and in the return route direction according to images acquired in the first step by repeating the second and third steps, and a step of selecting common tie points from the images adjacent to each other in the adjacent course and connecting the adjacent stereo-images in the course.
Abstract:
A direction detecting apparatus provided at a known position from a lower end of a supporting pole, comprising an image pickup device with an optical axis orthogonal to an axis of the supporting pole and an arithmetic processing part for calculating based on an image from the image pickup device, wherein the image pickup device acquires an image so as to include an object for which a direction is to be detected, wherein the arithmetic processing part calculates and detects a direction and a tilt of the object from a relation between a position of the object in the image and an optical axis of the image pickup device.
Abstract:
A flying vehicle guiding system, which comprises a remotely controllable flying vehicle system, a surveying instrument being able to measure distance, angle, and track, and a ground base station for controlling a flight of the flying vehicle system based on measuring results by the surveying instrument, wherein the flying vehicle system has a retro-reflector as an object to be measured, wherein the surveying instrument has a non-prism surveying function for performing distance measurement and angle measurement without a retro-reflector, a prism surveying function for performing distance measurement and angle measurement with respect to the retro-reflector, and a tracking function for tracking the retro-reflector and for performing distance measurement and angle measurement, wherein the surveying instrument performs non-prism measurement on a scheduled flight area, the ground base station sets a safe flight area based on the results of the non-prism measurement, and controls so that the flying vehicle system flies in the safe flight area based on the results of tracking measurement by de surveying instrument.
Abstract:
A rotation angle detecting apparatus comprises a bearing holder, a rotation shaft rotatably supported by said bearing holder, a shaft portion space formed in said rotation shaft, a bearing holder space formed in said bearing holder, a first condenser lens in said shaft portion space and having an optical axis that coincides with a center line of said rotation shaft, a second condenser lens in said bearing holder space and on an extension of a center line of said rotation shaft, an angle detection pattern at a focal position of one of said first and said second condenser lens, and an image sensor at a focal position of the other of said condenser lens, wherein said image sensor detects a projection image of said angle detection pattern projected onto said image sensor, and a displacement of said projection image involved by the rotation of said rotation shaft is detected.
Abstract:
A displacement measuring device, comprising a pattern projecting unit, a pattern image pickup unit capable of relatively displacing with respect to the pattern projecting unit and a control unit, wherein the pattern projecting unit projects a displacement detecting pattern to the pattern image pickup unit, the pattern image pickup unit picks up the displacement detecting pattern as projected, the control unit circulates image of the displacement detecting pattern picked up by the pattern image pickup unit to the pattern projecting unit, updates the displacement detecting pattern projected by the pattern projecting unit to the displacement detecting pattern as circulated, and projects the displacement detecting pattern as updated to the pattern image pickup unit, wherein relative displacement between the pattern projecting unit and the pattern image pickup unit is obtained by dividing a displacement amount of the displacement detecting pattern in the image acquired by circulation by the number of circulations.
Abstract:
The invention provides a tilt detecting system comprising, a surveying instrument having a distance measuring function and a line laser projecting unit installed as horizontally rotatable for projecting a vertical line laser, and a photodetection device having at least two photodetection units provided at a known interval, a target with a retro-reflectivity and an arithmetic unit, wherein the line laser projecting unit is rotated, each of the photodetection units are made to scan the line laser and the arithmetic unit detects a tilting angle of the photodetection device based on a deviation between a photodetection time moment of each photodetection unit and the distance measurement result of the target of the surveying instrument.
Abstract:
The invention provides a camera for photogrammetry, which comprises a shaft 11 tiltably supported in any direction via a gimbal 14, a GPS device having a GPS antenna 12 installed on an upper end of said shaft, and a photographic device main unit 13 installed on a lower end of said shaft, wherein optical axis of said photographic device main unit is designed so as to direct in vertical and downward direction, said photographic device main unit has an image pickup unit 24 installed in a known relation with said GPS antenna and a control device for controlling image pickup of said image pickup unit, and said control device 19 controls said image pickup unit so that still image is acquired by the image pickup unit, and an image pickup position at the time of image pickup is obtained by said GPS device.