Abstract:
Apparatus and methods are described for scheduling transmission resources in a relay-enabled orthogonal frequency-division multiple access (OFDMA) wireless communications system. Schedulers are described which address the problem of determining the optimal transmission schedule across two hops in the presence of finite user buffers with methods that provide approximate solutions with worst-case performance guarantees and average-case performance that is close to the optimal. The solutions formulate the diversity scheduling problem as an integer program. The weights used in the formulation incorporate the various diversity gains. The integer program is relaxed to a linear program and solved. The resulting fractional solutions are then rounded to integral values. In the process, if buffer or channel feasibility is violated, such violations are addressed through appropriate mechanisms that provide performance guarantees. The relay hop fractional variables are rounded to integral values first. Then the access hop flow is updated based on the rounded relay hop flow. Finally, the access hop variables are rounded to integral values to provide the resulting flow schedule.
Abstract:
A wireless network with integrated scheduling of unicast and multicast users in a relay-enabled two-hop wireless network is disclosed. In this system, users with finite buffers are considered and scheduled over multiple channels in an OFDMA-based wireless network. The gain-specific and efficient scheduling system helps leverage diversity and spatial reuse gains from these networks. The system is applicable to both unicast and multicast traffic and leverages diversity and spatial reuse gains simultaneously to optimize the target network with both unicast and multicast flows. The integrated scheduling system strikes a good balance in delivering efficient performance to unicast and multicast flows.
Abstract:
The present invention discloses systems and methods for controlled dissemination of information in mobile networks using encrypted broadcasts that are decrypted at the device. An encryption key is generated corresponding to a particular category or granularity of information. The information is encrypted before it is broadcast to the sector. A user within the sector sends a key request across the network, in response to which the encryption key is sent to the user. The user can decrypt the encrypted information received in the broadcast. Additionally, a credit-checking mechanism may be employed to ensure that the user has sufficient credit to purchase the key. In one embodiment, the information to be disseminated is divided into a plurality of categories, wherein each category corresponds to a granularity of information. The encryption key is one in a set of encryption keys, each of said set of encryption keys being assigned to a particular hierarchical level corresponding to a particular granularity of information.
Abstract:
Methods and systems for managing resources in femtocells are disclosed. One method includes transmitting at least one frame including a first zone of resources on which a set of base stations including at least one femtocell base station and base stations that are adjacent to the femtocell base station implement transmission of signals to impose interference. The one or more frames further includes a second zone dedicated for measuring throughput of mobile stations served by the femtocell base station without interference. The mobile stations are categorized by determining throughputs of the mobile stations with interference based on the transmission of signals on the first zone. Resources of at least one additional frame are configured based on the categorization. Further, the additional frame(s) are transmitted in a cell of the femtocell base station in accordance with the configuration.
Abstract:
A method for wireless multicasting with beamforming includes dividing single lobe beam patterns into groups, each group being a composite beam pattern, the dividing being according to one of an equal power partition configuration and an asymmetric power partition configuration; and transmitting the information with the composite beam pattern.
Abstract:
Methods and systems for reusing macro cell resources in femto cell base stations or relay stations in a non-collaborative manner are disclosed. In addition, orthogonal resource allocation between a macro cell base station and femto cell base stations/relay stations may be dynamically adjusted by considering user-population variance. Moreover, an additional level of spatial reuse by femto cell base stations or relay stations can be provided by employing macro cell user location information.
Abstract:
A method includes transmitting location-specific information by a user device to a service provider, preserving anonymity of the user device in the transmitting, providing incentives to the user device for information upload to the service provider, and disabling the service provider from associating the user device with the information upload and the location specific information for promoting the information upload.
Abstract:
Systems and methods are disclosed to partition a multicast group into a plurality of partitions where each partition has a mutually exclusive subset of users or clients; scheduling beam transmission with switched beamforming antennas; and performing the multicast transmission in accordance with the beam scheduling.
Abstract:
Systems and methods are disclosed for transmitting signals between a transmitter and a receiver by differentially estimating channel coefficients for each of the antenna elements relative to a reference antenna element; determining beam weights to remove oscillator induced phase or offset; and applying a correction (beamforming solution) at the transmitter to make the phase of the received signal from different antenna elements to be coherently combined at the receiver.
Abstract:
Systems and methods for scheduling transmission that leverages both diversity and spatial reuse gains in the presence of finite user buffers in a two-hop wireless relay setting are disclosed. The system includes partitioning a set of relays to enable spatial reuse while accounting for half-duplex nature of relays, and assigning and reusing of channels to the relays (and associated users) in the two partitions to maximize the aggregate system throughput while ensuring proportional fairness.