Abstract:
An exterior vehicle mirror system has a vehicle mountable support and a support arm. A mirror housing is movable along the support arm between the support and a distal end. An electrically powered mirror unit adjust mechanism can adjust the mirror unit about horizontal and vertical axes. An electrically powered pivoting and extending mechanism pivots the support arm about the support between an extended position and a position folded against a vehicle side. An electronic control system controls movement of the mirror housing along the support arm, and folding of the support arm, independent of an adjustment of the mirror unit. The electronic control system comprises a memorized position for the powered pivoting and extending mechanism.
Abstract:
A vehicular exterior mirror system comprises an exterior mirror assembly and an electronic control system. The exterior mirror assembly has a fixed support adapted to be mounted to the side of the vehicle and has a mirror housing supported by a support arm and movable along the support arm from a first position proximate to the fixed support to a second position proximate to a distal end of the support arm. The exterior mirror assembly comprises a first electrically powered mechanism for pivoting the support arm about the fixed support, a second electrically powered mechanism for moving the mirror housing along the support arm and a third electrically powered mechanism operable to adjust a mirror unit of the mirror housing to a desired adjusted position. The electronic control system is operable by the driver of the vehicle to control operation of at least the first electrically powered mechanism independent of operation of the second electrically powered mechanism.
Abstract:
A first power mechanism is provided in association with a fixed support and with a swingable structure, and pivots the swingable structure relative to the fixed support between an extended position and a folded position adjacent the vehicle. A second power mechanism is operatively associated with a swingable structure and a mirror housing to move the mirror housing between inner and outer extended positions. A third mechanism moves the mirror unit into desired adjusted position about horizontal and vertical axes. An electronic control controls the operation of the first power mechanism, the second power mechanism and third power mechanism to control the powered pivoting of swingable structure.
Abstract:
A vehicle mirror assembly comprising a housing assembly, a mirror unit, a support assembly to support the housing assembly, a power operated pivot assembly between the support assembly and the housing assembly to enable the housing assembly to be pivoted with respect to the support assembly about a generally upright axis (1) between an operative position and a folded position in response to the power operation of the pivot assembly and (2) from the operative position thereof in either direction in response to an unwanted impact blow applied in either direction thereto. A spring biased pivotal control system is disposed between a movable tubular member of the pivot assembly and the support assembly to provide a control resistance to pivotal movement of the movable tubular member and hence the housing assembly connected thereto. A spring biased indexing system is disposed between a motion transmitting member and the movable tubular member to (1) transmit the movement of the motion transmitting member under power to the movable tubular member to thereby move the housing assembly between the operative and folded positions with the control system providing a control resistance and (2) allow the movable tubular member to be moved from the operative position relative to the motion transmitting member in response to an unwanted impact blow applied to the housing assembly in either direction to move the housing assembly from the operative position with the indexing system providing an indexing resistance to such movement which is independent of the control resistance.
Abstract:
A mirror reflective element assembly for an exterior rearview mirror assembly of a vehicle includes a reflective element and an auxiliary wide angle element. The reflective element has a front surface and a rear surface and a first reflector portion and a second reflector portion, with the first reflector portion having a first reflective coating disposed thereat. The auxiliary wide angle element is disposed at a rear surface of the glass mirror substrate of the reflective element and at the second reflector portion. The auxiliary wide angle element has a glass element having a curved rear surface with a second reflective coating disposed at the curved rear surface. An optical coupling element may be disposed between a front surface of the auxiliary wide angle element and the rear surface of the reflective element, the optical coupling element may be a substantially optically clear and flexible elastomer.
Abstract:
A mirror reflective element sub-assembly includes a mirror reflective element, a mirror back plate and a signal indicator. The mirror back plate includes (i) a generally planar portion and (ii) an indicator receiving portion. The indicator receiving portion has a wall structure extending at an angle from the generally planar portion adjacent to an aperture established through the mirror back plate. The signal indicator has a light source disposed at a circuit element and a housing substantially encases the circuit element therein. An electrical connector protrudes from the circuit element and is accessible at a connector portion of the housing for connecting to electrical wiring of the vehicle. The signal indicator includes an indicia element at a forward end thereof. When the light source is activated, light emitted by the light source emanates through the aperture and through the mirror reflective element and is transmitted through the indicia element.
Abstract:
A minor reflective element sub-assembly suitable for use for an exterior rearview mirror assembly of a vehicle includes a mirror reflective element and a mirror back plate having a generally planar portion and an indicator receiving portion established via a plastic injection molding operation. The indicator receiving portion includes a wall structure extending at an angle from the generally planar portion adjacent to an aperture established through the mirror back plate. A signal indication module has a light source and a housing that is at least partially received at the wall structure of the indicator receiving portion of the mirror back plate. When the light source is activated, light emitted by the light source emanates through the aperture of the mirror back plate and through the mirror reflective element at an angle relative to the generally planar portion of the mirror back plate.
Abstract:
An extendable flush door handle assembly for a door or liftgate of a vehicle includes a base portion and a handle portion movably attached to the base portion. The handle portion is movable between a recessed position, where the handle portion is at least partially received in the base portion, and a partially extended position, where the handle portion extends partially outward from the base portion and is graspable by a user. The handle portion is moved from the recessed position to the partially extended position responsive to a trigger, such as a signal from a key fob or a passive entry system or a vehicle door unlock button or the like. The handle portion, when in its recessed position, is at least partially received in the base portion so as to be not readily graspable by a user until the handle portion is moved toward its partially extended position.
Abstract:
A rearview mirror system for a vehicle includes an interior rearview mirror assembly having a mounting structure, an electrical actuator and a reflective element. The mounting structure may be configured to be detachably mounted at an attachment element adhered to an inner surface of the vehicle windshield. The mounting structure is adjustable relative to the vehicle windshield to generally vertically adjust a nominal setting of a rearward field of view of the reflective element. The electrical actuator is operable to adjust the reflective element in order to vertically and horizontally adjust a rearward field of view of the reflective element. The interior rearview mirror assembly may include an imaging sensor having a forward field of view through the vehicle windshield. The forward field of view of the imaging sensor may not be adjusted when the electrical actuator adjusts the rearward field of view of the reflective element.
Abstract:
An exterior vehicle mirror system has a vehicle mountable support and a support arm. A mirror housing is movable along the support arm between the support and a distal end. An electrically powered mirror unit adjust mechanism can adjust the mirror unit about horizontal and vertical axes. An electrically powered pivoting and extending mechanism pivots the support arm about the support between an extended position and a position folded against a vehicle side. An electronic control system controls movement of the mirror housing along the support arm, and folding of the support arm, independent of an adjustment of the mirror unit. The electronic control system comprises a memorized position for the powered pivoting and extending mechanism, or alternatively, a microprocessor for controlling at least one of movement of the mirror housing along the support arm, folding of the support arm, and adjustment of the mirror unit.