摘要:
Recording in a recording apparatus is controlled according to the temperature of a recording head. The temperature of the recording head and the surrounding temperature around the recording head are detected. An offset value, based on the temperature of the recording head and the surrounding temperature, is set at a predetermined timing. The detected temperature of the recording head is corrected, based on the offset value. The offset value is renewed, based on the head temperature and the surrounding temperature, during repetition of detection of the head temperature.
摘要:
Random masks each having a given size and defining a random array of non-record pixel locations and record pixel locations are placed in association with record areas in mask registers. Using the placed masks, record data is thinned-out and supplied to a recording head. An image is then recorded. Thus, since thinning-out masks do not have periodicity, any inherent density nonuniformity loses periodicity. Consequently, high-definition images can be produced.
摘要:
Random masks each having a given size and defining a random array of non-record pixel locations and record pixel locations are placed in association with record areas in mask registers. Using the placed masks, record data is thinned-out and supplied to a recording head. An image is then recorded. Thus, since thinning-out masks do not have periodicity, any inherent density nonuniformity loses periodicity. Consequently, high-definition images can be produced.
摘要:
An image processing method and an apparatus capable of employing the method, which smooth notches on outlines and output an image of high quality having smooth outlines. First, edges to be smoothed are determined, then numbers of consecutive black dots in the horizontal and vertical directions are counted from originating points in the determined edge. Further, dots for correcting an original image are calculated based on the counted numbers of consecutive black dots. Thereby it is possible to perform the high speed smoothing correction efficiently, facilitating production of a high quality printing apparatus for a reasonable price.
摘要:
The purpose is to provide a high quality halftone recording with a reduced grainy feeling without lowering the true resolving power. Provided is an apparatus for making a halftone recording by employing three or more types of color materials, each of which has at least one grade of concentration, wherein each type of the color materials having the lowest concentration provides, when recording on a recording medium having a first lightness, a recorded region having its own lightness, and wherein a difference between the first lightness and the lightness of the recorded region is not more than 35, the lightness being measured according to the definition of CIE 1976 psychological measurement lightness using a standard illuminating light D65 as a light source.
摘要:
Print codes supplied from a host computer are received and analyzed to generate print data for the individual colors, and the generated print data are stored in print buffers corresponding to the colors. The print data corresponding to yellow ink with high lightness is expressed by binary data, and is printed by one dot per pixel by a single print scan. The print data corresponding to each of the remaining high-density (thick) inks is expressed by multi-valued data having a larger number of bits than the yellow data, and is printed by a plurality of print scans.
摘要:
An ink jet recording apparatus, in which thermal energy is applied to ink in accordance with a driving signal applied to a heater to produce a bubble, by which ink is ejected onto a recording material, includes a driver for applying a plurality of driving signals to the heater for one ejection of one ink droplet. The driving signals comprise a first driving signal not ejecting the ink and a second driving signal for ejecting the ink, the second driving signal being applied after a rest period after the first driving signal. The apparatus further includes a controller for changing an amount of ink ejected by changing a length of the rest period and changing the first driving signal. The controller effects its changing operation in a first changing region in which the rest period is changed without changing the first driving signal and in a second changing region in which a length of the first drive signal is changed.
摘要:
An image is recorded on a recording medium by recording dots of a black ink and a color ink discharged onto the recording medium from a recording head. A boundary proximity-degree detecting circuit detects the degree of positional proximity, i.e., closeness, between the recording dots of the black ink and the recording dots of the color ink at the boundary between these dots. A dot substituting circuit performs, in accordance with the detected degree of positional proximity, substitution of the black pixels with recording dots of a color ink at the boundary. Thus, pixels of the image to be recorded are replaced with recording dots of a color ink by an extent which is determined based on the degree of positional proximity between the pixels of the different colors. A sharp black image can be obtained with minimized color mixing at the boundary between the black image region and the color region, regardless of the degree of positional proximity between these regions.
摘要:
An ink tank for storing the ink to be supplied to an ink jet head mounted on an ink jet apparatus for forming an image by discharging multiple different inks, comprising, a first ink vessel for receiving a first ink, as well as having a first atmosphere communicating part for communicating the inside of vessel with the atmosphere, and a first ink supply port for supplying the ink to said ink jet head, and a second ink vessel for receiving a second ink, as well as having a second ink supply port for supplying the ink to said ink jet head, wherein said second ink vessel is disposed within said first ink vessel, with said second ink supply port exposed to the outside
摘要:
In the case of printing in three-value level utilizing two kinds of inks mutually different densities for one color (higher and lower density inks), it is assumed that a reflection density of a region having a predetermined area when solid print is performed only by the lower density ink, and that when solid print is performed only by the higher density ink are expressed ODt and ODn, respectively. Since the granular appearance of the ink dots is expressed in terms of reflection density of one dot, the granular appearance of a lower density ink dot at a portion of image formed only by the lower density ink dots and the granular appearance of a higher density ink dot at a portion of image formed by the higher and lower density ink dots are expressed in terms of values of ODt and (ODn-ODt) divided by the number of pixels included in the above region, respectively. Accordingly, by making the reflection density ODt to be approximately one half of the reflection density ODn, the granular appearance produced by the lower density ink dot at the highlighted portion and the granular appearance produced by the higher density ink dot at the portion where the higher density ink dots scattered in the lower density ink dots can be made substantially equal to each other. For this purpose, it is preferable that a dye concentration of the lower density ink is to be about one fourth of that of the higher density ink.