摘要:
A thermal treatment apparatus, a method for manufacturing a semiconductor device, and a method for manufacturing a substrate, wherein the occurrence of slip dislocation in a substrate during heat treatment is reduced, and a high-quality semiconductor device can be manufactured, are intended to be provided.A substrate support 30 is formed from a main body portion 56 and a supporting portion 58. In the main body portion 56, a plurality of placing portions 66 extend parallel, and supporting portions 58 are provided on the placing portions 66. A substrate 68 is placed on the supporting portion 58. The supporting portion 58 has a smaller area than an area of a flat face of the substrate, and is formed from a silicon plate having a thickness larger than thickness of the substrate, so that deformation during heat treatment is reduced. The supporting portion 58 is made of silicon, and a layer coated with silicon carbide (SiC) is formed on a substrate-placing face of the supporting portion 58.
摘要:
A thermal treatment apparatus, a method for manufacturing a semiconductor device, and a method for manufacturing a substrate, wherein the occurrence of slip dislocation in a substrate during heat treatment is reduced, and a high-quality semiconductor device can be manufactured, are intended to be provided.A substrate support 30 is formed from a main body portion 56 and a supporting portion 58. In the main body portion 56, a plurality of placing portions 66 extend parallel, and supporting portions 58 are provided on the placing portions 66. A substrate 68 is placed on the supporting portion 58. The supporting portion 58 has a smaller area than an area of a flat face of the substrate, and is formed from a silicon plate having a thickness larger than thickness of the substrate, so that deformation during heat treatment is reduced. The supporting portion 58 is made of silicon, and a layer coated with silicon carbide (SiC) is formed on a substrate-placing face of the supporting portion 58.
摘要:
A heat-treating apparatus capable of realizing a highly precise processing maintaining a high degree of safety, and a method of producing substrates are provided. The heat-treating apparatus comprises a reaction tube for treating substrates; a manifold for supporting the reaction tube; and a heater provided surrounding the reaction tube to heat the interior of reaction tube; wherein the reaction tube and the manifold are in contact with each other as their continuous flat surfaces come in contact with each other; a cover member is provided to cover the contact portion between the reaction tube and the manifold from the outer side; and the cover member is provided with at least either a gas feed port or an exhaust port communicated with a space formed among the cover member, the reaction tube and the manifold.
摘要:
A thermal treatment apparatus, a method for manufacturing a semiconductor device, and a method for manufacturing a substrate, wherein the occurrence of slip dislocation in a substrate during heat treatment is reduced, and a high-quality semiconductor device can be manufactured, are intended to be provided. A substrate support 30 is formed from a main body portion 56 and a supporting portion 58. In the main body portion 56, a plurality of placing portions 66 extend parallel, and supporting portions 58 are provided on the placing portions 66. A substrate 68 is placed on the supporting portion 58. The supporting portion 58 has a smaller area than an area of a flat face of the substrate, and is formed from a silicon plate having a thickness larger than thickness of the substrate, so that deformation during heat treatment is reduced. The supporting portion 58 is made of silicon, and a layer coated with silicon carbide (SiC) is formed on a substrate-placing face of the supporting portion 58.
摘要:
A method of manufacturing an SOI substrate uses an SOI substrate having a first single-crystal silicon layer, an insulating layer formed on the first single-crystal silicon layer, and a second single-crystal silicon layer formed on the insulating layer. The surface of the second single-crystal silicon layer is thermally oxidized. The second single-crystal silicon layer is controlled to have a predetermined thickness by removing the thermally oxidized surface. This step controlling the second single-crystal silicon layer to have a predetermined thickness includes the step of eliminating, by annealing, a stacking fault formed by the thermal oxidation.
摘要:
A SIMOX substrate 1 is processed through high temperature oxidation treatment after forming a mask-pattern 3 to shield specified electrodes from oxidation in order to increase partly a thickness of a buffed oxide layer 2 to form an area 4. Next, after an oxide film is removed from the surface of the substrate and LOCOS separation is practiced, MOSFET is produced by fabricating a source S and a drain D on the area 4 or the buffed oxide layer 2. Since the buried oxide layer corresponding to electrodes parts influenced by disadvantages of parasitic capacitance are thickened, an operation speed of an inverter is not much decreased and since mean thickness of the buried oxide layer can be thinner, a decrease of a drain electric current by negative electrical resistance can be suppressed. Furthermore, since the thickness of the buffed oxide layer can be controlled in response to each device, plural devices having different breakdown voltages are formed together on the same substrate.