Abstract:
Techniques and systems for control of optical switching arrays are described. A switch array controller according to an aspect of the present invention operates so as to achieve reduced power consumption and maintain crosstalk within acceptable limits. Various rules are applied in order to insure that the desired criteria are met. In order to reduce transient effects, switching from one output to another is accomplished in a sequence chosen to maximize the number of transitions occurring in those portions of the array not carrying a signal, and to minimize the number of transitions that occur in portions of the array carrying the signal. Transitions are made in the portion of the array to which the signal will be directed, then a switch is transitioned between the old and new signal paths, and finally further transitions are made in the portion of the array within which the signal was previously directed.
Abstract:
A method for designing a wireless telecommunications system having a plurality of cells is provided. In one embodiment of such a method, a call demand per cell is estimated, and a channel demand based thereon is determined on a cell-by-cell basis. The cell-by-cell channel demand is used to provide a reasonably tight upper bound on the number of communication channels required to satisfy the system-wide call demand. It is implicit in the procedure for estimating the upper bound that no mutually "interfering" base stations use the same channel (i.e., frequency). "Cliques" of mutually-interfering base stations or cells are defined. A channel demand is determined for each clique by adding up the channel demand for each cell in the clique. The greatest channel demand of all cliques determines a "maximum clique demand" .omega..sup.d. The upper bound on the number of channels required to satisfy the system-wide call demand is given by the expression: .chi..sup.d .ltoreq.17/12.multidot..omega..sup.d when mutually-interfering cells are adjacent cells, and is given by the expression: .chi..sup.d .ltoreq.2.multidot..omega..sup.d -d.sub.min when mutually interfering cells are adjacent cells and next-to-adjacent cells, wherein d.sub.min is a minimum channel demand of all cells in the system. Having a reasonably-good estimate of the upper bound on the system-wide channel requirement, a wireless service provider may then seek to obtain or allot a commensurate amount of frequency spectrum to support its system.
Abstract:
Methods for drilling a wellbore within a subsurface region and drilling assemblies and systems that include and/or utilize the methods are disclosed herein. The methods include receiving a plurality of drilling performance indicator maps, normalizing the plurality of drilling performance indicator maps to generate a plurality of normalized maps, adaptive trending of the plurality of drilling performance indicator maps to generate a plurality of trended maps, summing the plurality of trended maps to generate an objective map, selecting a desired operating regime from the objective map, and adjusting at least one drilling operational parameter of a drilling rig based, at least in part, on the desired operating regime.
Abstract:
A controller system, comprising: a controller configured to control toward a desired process value, an arrangement to repetitively measure a value of the desired process value; wherein the controller is configured to execute a routine that: determines a moving average of the measured values, determines a moving standard deviation of the measured values, defines an outer zone of measured values with the determined moving average and a first plurality of the determined moving standard deviation, defines an inner zone of measured values with the determined moving average and a second plurality of the determined moving standard deviation, monitors the measured values for the occurrence of a first statistical event with respect to the outer zone and adjusting a gain of the controller by a first factor upon detection of the first statistical event, monitors the measured values for the occurrence of a second statistical event with respect to the inner zone and adjusting a gain of the controller by a second factor upon detection of the second statistical event.
Abstract:
Methods of drilling a wellbore within a subsurface region and drilling control systems that perform the methods. The methods include accessing an objective map and calculating a plurality of critical points of the objective map. The methods also include scoring each critical point and selecting a selected critical point of the plurality of critical points. The selected critical point describes an estimated value of at least one drilling performance indicator for a selected value of at least one independent operational parameter. The methods further include operating the drilling rig at the selected value of the at least one independent operational parameter and, during the operating, determining an actual value of the at least one drilling performance indicator. The methods also include updating the objective map to generate an updated objective map and repeating at least a portion of the methods.
Abstract:
The behavior of a monitored condition over time for a reactor or reaction system can be analyzed using groupings or windows of data to identify anomalous features in the time-average values. Anomalous features can be identified based on a threshold value generated from the analysis. Based on identification of an anomalous feature, a corrective action can be taken. For example, when the monitored condition is the pressure drop across a catalyst bed, detection of an anomaly can indicate the time to initiate a wash process for the catalyst bed before a large drop in catalyst activity occurs. By detecting an anomaly at an earlier point in time, a wash cycle can be initiated earlier so that the wash is more effective at restoring the catalyst bed to a desired condition.
Abstract:
Systems and methods for restricting fluid flow in a casing conduit, including a wellbore that extends within a subterranean formation, a casing string that extends within the wellbore and defines a portion of the casing conduit, a plurality of motion-arresting structures that project from an inner surface of the casing string to define a plurality of reduced-area regions of the casing conduit, and an autonomous sealing device that defines a contracted configuration and an expanded configuration. The methods include conveying the autonomous sealing device through the casing conduit, determining that the autonomous sealing device is located within a target portion of the casing conduit, expanding the autonomous sealing device to the expanded configuration, retaining the autonomous sealing device on a selected motion-arresting structure, and restricting fluid flow within the casing conduit with the autonomous sealing device.
Abstract:
Method for analyzing seismic data representing a subsurface region for presence of a hydrocarbon system or a particular play. Seismic attributes are computed, the attributes being selected to relate to the classical elements of a hydrocarbon system, namely reservoir, seal, trap, source, maturation, and migration. Preferably, the attributes are computed along structural fabrics (1) of the subsurface region, and are smoothed over at least tens or hundreds of data voxels. The resulting geologic attributes (2) are used to analyze the data for elements of the hydrocarbon system and/or recognition of specific plays, and for ranking and annotating partitioned regions (3) of the data volume based on size, quality, and confidence in the prospectivity prediction (5). A catalogue (8) of hydrocarbon trap configurations may be created and used to identify potential presence of hydrocarbon traps and/or aid in scoring (4) and ranking partitioned regions as hydrocarbon prospects.
Abstract:
A fuel management system mounted on a vehicle is operative to feed individually or a mixture of grades of relatively low, intermediate, and high autoignition temperature fuels to an associated internal combustion engine. The system includes an on board separation unit (OBS unit) for receiving and separating intermediate autoignition temperature (IAT) fuel into low and high autoignition temperature fuels, LAT and HAT, respectively. The production rate of the LAT and HAT fuels by the OBS unit is controlled to substantially match the consumption requirements of the engine at any given time for the LAT and HAT fuels.
Abstract:
A fuel management system mounted on a vehicle is operative to feed individually or a mixture of grades of relatively low, intermediate, and high autoignition temperature fuels to an associated internal combustion engine. The system includes an on board separation unit (OBS unit) for receiving and separating intermediate autoignition temperature (IAT) fuel into low and high autoignition temperature fuels, LAT and HAT, respectively. The production rate of the LAT and HAT fuels by the OBS unit is controlled to substantially match the consumption requirements of the engine at any given time for the LAT and HAT fuels.