Abstract:
The present resistive memory device includes first and second electrodes. An active layer is situated between the first and second electrodes. The active layer with advantage has a thermal conductivity of 0.02 W/Kcm or less, and is surrounded by a body in contact with the layer, the body having a thermal conductivity of 0.01 W/Kcm or less.
Abstract:
An electronic device includes a first electrode, a second electrode and an insulating layer between the first and second electrodes, which insulating layer may be susceptible to reduction by H2. A gettering layer is provided on and in contact with the first electrode, the gettering layer acting as a protective layer for substantially avoiding reduction of the insulating layer by capturing and immobilizing H2. A glue layer may be provided between the gettering layer and first electrode. An additional gettering layer may be provided on and in contact with the second electrode, and a glue layer may be provided between the second electrode and additional gettering layer.
Abstract:
In an electronic device, a diode and a resistive memory device are connected in series. The diode may take a variety of forms, including oxide or silicon layers, and one of the layers of the diode may make up a layer of the resistive memory device which is in series with that diode.
Abstract:
The present resistive memory device includes first and second electrodes. An active layer is situated between the first and second electrodes. The active layer with advantage has a thermal conductivity of 0.02 W/Kcm or less, and is surrounded by a body in contact with the layer, the body having a thermal conductivity of 0.01 W/Kcm or less.
Abstract:
An electronic device includes a first electrode, a second electrode and an insulating layer between the first and second electrodes, which insulating layer may be susceptible to reduction by H2. A gettering layer is provided on and in contact with the first electrode, the gettering layer acting as a protective layer for substantially avoiding reduction of the insulating layer by capturing and immobilizing H2. A glue layer may be provided between the first layer and first electrode. An additional gettering layer may be provided on and in contact with the second electrode, and a glue layer may be provided between the second electrode and additional gettering layer.
Abstract:
A present method of fabricating a memory device includes the steps of providing a dielectric layer;, providing an opening in the dielectric layer, providing a first conductive body in the opening, providing a switching body in the opening, the first conductive body and switching body filling the opening, and providing a second conductive body over the switching body. In an alternate embodiment, a second dielectric layer is provided over the first-mentioned dielectric layer, and the switching body is provided in an opening in the second dielectric layer.