摘要:
In the present electronic test structure comprising, a conductor is provided, overlying a substrate. An electronic device overlies a portion of the conductor and includes a first electrode connected to the conductor, a second electrode, and an insulating layer between the first and second electrodes. A portion of the conductor is exposed for access thereto.
摘要:
In the present electronic test structure comprising, a conductor is provided, overlying a substrate. An electronic device overlies a portion of the conductor and includes a first electrode connected to the conductor, a second electrode, and an insulating layer between the first and second electrodes. A portion of the conductor is exposed for access thereto.
摘要:
In an electronic device, a diode and a resistive memory device are connected in series. The diode may take a variety of forms, including oxide or silicon layers, and one of the layers of the diode may make up a layer of the resistive memory device which is in series with that diode.
摘要:
In the present electronic test structure comprising, a conductor is provided, overlying a substrate. An electronic device overlies a portion of the conductor and includes a first electrode connected to the conductor, a second electrode, and an insulating layer between the first and second electrodes. A portion of the conductor is exposed for access thereto.
摘要:
In an electronic device, a diode and a resistive memory device are connected in series. The diode may take a variety of forms, including oxide or silicon layers, and one of the layers of the diode may make up a layer of the resistive memory device which is in series with that diode.
摘要:
In the present electronic test structure comprising, a conductor is provided, overlying a substrate. An electronic device overlies a portion of the conductor and includes a first electrode connected to the conductor, a second electrode, and an insulating layer between the first and second electrodes. A portion of the conductor is exposed for access thereto.
摘要:
In an electronic device, a diode and a resistive memory device are connected in series. The diode may take a variety of forms, including oxide or silicon layers, and one of the layers of the diode may make up a layer of the resistive memory device which is in series with that diode.
摘要:
In the method of fabricating a metal-insulator-metal (MIM) device, a first electrode of α-Ta is provided. The Ta of the first electrode is oxidized to form a Ta2O5 layer on the first electrode. A second electrode of β-Ta is provided on the Ta2O5 layer. Such a device exhibits strong data retention, along with resistance to performance degradation under high temperatures.
摘要翻译:在制造金属 - 绝缘体 - 金属(MIM)器件的方法中,提供了α-Ta的第一电极。 在第一电极上氧化第一电极的Ta以形成Ta 2 O 5 O 5层。 β-Ta的第二电极设置在Ta 2 O 5层上。 这种器件表现出强大的数据保持性,同时耐高温下的性能降解。
摘要:
In the method of fabricating a metal-insulator-metal (MIM) device, a first electrode of α-Ta is provided. The Ta of the first electrode is oxidized to form a Ta2O5 layer on the first electrode. A second electrode of β-Ta is provided on the Ta2O5 layer. Such a device exhibits strong data retention, along with resistance to performance degradation under high temperatures.
摘要翻译:在制造金属 - 绝缘体 - 金属(MIM)器件的方法中,提供了α-Ta的第一电极。 在第一电极上氧化第一电极的Ta以形成Ta 2 O 5 O 5层。 β-Ta的第二电极设置在Ta 2 O 5层上。 这种器件表现出强大的数据保持性,同时耐高温下的性能降解。
摘要:
A graphene-based device is formed with a trench in one or more layers of material, a graphene layer within the trench, and a device structure on the graphene layer and within the trench. Fabrication techniques includes forming a trench defined by one or more layers of material, forming a graphene layer within the trench, and forming a device structure on the graphene layer and within the trench.