Abstract:
A method for transmitting uplink (UL) data requiring low latency in a wireless communication system according to the present invention, the method performed by a user equipment comprises transmitting contention PUSCH resource block (CPRB) indication information used for identifying a particular UE and/or particular data to an eNB; transmitting UL data to the eNB through CPRB resources of a contention based PUSCH (CP) zone; and receiving a hybrid automatic retransmit request (HARQ) response with respect to the UL data from the eNB through a physical hybrid ARQ indicator channel (PHICH).
Abstract:
A method for performing communication by a user equipment (UE) in a UE-flexible Time Division Duplex (TDD) mode in a network configured to support the UE-flexible TDD mode in which a base station (BS) operates in a full duplex mode and a user equipment (UE) operates in a half duplex mode is disclosed. The method includes receiving information regarding UE-specific UL/DL (Uplink/Downlink) configuration configured in the UE from the base station (BS); if a ratio of a UL sub frame in the UE-specific UL/DL configuration is greater than ½, receiving a UL downlink control information (DCI) format including an uplink (UL) index value in a scheduled downlink sub frame from the base station (BS); and. recognizing a scheduled uplink (UL) sub frame based on the information regarding the UE-specific UL/DL configuration and the UL index value contained in the UL DCI format, and transmitting an uplink (UL) signal through the scheduled UL subframe.
Abstract:
Disclosed is a method for a user equipment to perform an initial access on a network by protecting privacy. The present invention includes the step of performing an RRC (radio resource control) connection setup with the network. And, in the RRC connection setup performing step, the user equipment generates a pseudo permanent identifier for a permanent identifier of the user equipment and sends an RRC connection setup complete message including the pseudo permanent identifier to the network.
Abstract:
The present invention relates to a wireless access system supporting a full duplex radio (FDR) transmission environment. A signal transmission and reception method of a base station for a signal in a wireless access system supporting a FDR, according to one embodiment of the present invention, comprises the steps of: transmitting, to a terminal, an indicator which notifies of an application of terminal-specific time division duplex (TDD); transmitting, to the terminal, frame setting information according to the terminal-specific TDD; and transmitting and receiving a signal to and from the terminal on the basis of the frame setting information, wherein the frame setting information is capable of being set on the basis of a first constraint in which a first subframe is a downlink subframe and a special subframe always exists.
Abstract:
Provided are a method for allocating a temporary radio network temporary identifier to a terminal within a random access procedure in a wireless communication system, and an apparatus supporting the same. The method for allocating a temporary radio network temporary identifier (T-RNTI) to a user equipment (UE) within a random access procedure in a wireless communication system, includes transmitting, by the UE, a random access preamble to a base station (BS), transmitting, by the UE, a radio resource control (RRC) request message to the BS through a contention-based physical uplink shared channel (PUSCH) resource block in which uplink data can be transmitted without uplink resource allocation scheduling, and receiving, by the UE, an RRC connection setup message identified by a T-RNTI allocated to the UE in response to the RRC request message, wherein the T-RNTI is allocated on the basis of the contention-based PUSCH resource block in which the RRC request message has been transmitted.
Abstract:
A method for decoding a low density parity check (LDPC) code for forward error correction by a receiver side in a wireless communication system according to an embodiment of the present invention comprises the steps of: acquiring a first reconstructed packet vector by decoding a reception packet vector encoded by an LDPC code generation matrix; determining a candidate for an error packet to be excluded form the reception packet vector when an error is detected in the first reconstructed packet vector; and acquiring a second reconstructed packet vector from the reception packet vector from which the determined candidate for the error packet has been excluded, wherein the step of acquiring the second reconstructed packet vector includes acquiring the second reconstructed packet vector through Gaussian elimination for the LDPC code generation matrix from which a row matrix corresponding to the candidate for the error packet has been excluded.
Abstract:
A method for a terminal receiving a downlink signal for low transmission latency in a wireless communication system, according to one embodiment of the present invention, comprises the steps of: receiving a downlink control channel from a base station; and receiving a downlink data channel based on control information transmitted from the downlink control channel. Here, the downlink data channel is transmitted in at least one advanced subframe comprising M number of orthogonal frequency division multiplexing (OFDM) symbols, and the downlink control channel is transmitted in at least one special symbol which is separate from the advanced subframe.
Abstract:
A method for a terminal transmitting an uplink signal for low transmission latency in a wireless communication system, according to one embodiment of the present invention, comprises the steps of: transmitting to a base station an uplink control channel containing control information on an uplink data channel; and transmitting the uplink data channel. Here, the uplink data channel is transmitted in at least one advanced subframe comprising M number of orthogonal frequency division multiplexing (OFDM) symbols, and the uplink control channel is transmitted in at least one special symbol which is separate from the advanced subframe.
Abstract:
A method for switching data between a plurality of communications systems according to the present invention is characterized by including the steps of: receiving a message from a first communications system having generated at least one data radio bearer (DRB) with a terminal for switching data to a second communications system; switching data to the second communications system based on the message; and carrying out data communication with the base station of the second communications system after switching data, wherein the message contains the information of all DRBs generated in the terminal or the information for indicating whether to keep the information of at least a particular one of the DRBs generated in the terminal, and the data switching operation is performed according to the information.
Abstract:
The present invention relates to a wireless access system, and particularly, provides a method for performing seamless handover in a network system supporting a double connectivity mode, and apparatuses supporting the method. As an embodiment of the present invention, a method for supporting handover by a source cell in a wireless access system supporting a double connectivity mode may comprise the steps of: receiving a measurement report message from a user equipment; transmitting small cell maintenance request information to a target cell; and receiving small cell maintenance response information from the target cell. The double connectivity mode is a mode in which a terminal maintains simultaneous connection to the source cell and a small cell. The small cell maintenance request information is information for requesting maintenance of the double connectivity mode for the small cell in order to support the handover. The small cell maintenance response information is information for indicating whether the target cell can maintain the double connectivity mode for the small cell.