Abstract:
A receiver to wirelessly receive power from a transmitter, and including a receiving unit to receive AC power from the transmitter; a rectifying unit to rectify the received AC power to DC power, a power management unit to manage power to be transferred to a load based on the rectified DC power and a DC-DC converter to supply a DC voltage required by the load, or to the load with the rectified DC power. The power management unit generates and transmits a control signal to adjust the power transferred to the load based on the rectified DC power.
Abstract:
Disclosed are a wireless power receiver and a method of managing the same. The wireless power receiver to wirelessly receive power from a wireless power transmitter and transmit the power to a load includes a receiving unit to receive AC power from the wireless power transmitter that receives power from a power supply device, a rectifying unit to rectify the received AC power to DC power, and a power managing unit to manage the power transmitted to the load based on the rectified DC power.
Abstract:
Disclosed is a wireless power receiver and a power control method thereof. The wireless power receiver includes a reception unit to receive power from the wireless power transmitter by using a resonance scheme; a load management unit to control an impedance of the load according to a state of the load; and a rectifying unit disposed between the reception unit and the load management unit in order to rectify the received power, wherein the power transmitted from the wireless power transmitter is controlled by the controlled impedance.
Abstract:
A power supply device for a wireless power transmitting apparatus according to an embodiment of the present invention includes a power supply unit to supply DC power, an AC power generating unit to generate AC power by using the DC power, and a harmonic component reduction unit to reduce a magnitude of power for a harmonic frequency component in the generated AC power.
Abstract:
Disclosed is a wireless power receiver for transferring power received from a wireless power transmitter to a load. The wireless power receiver includes a reception coil to receive AC power from the wireless power transmitter; a rectifying unit to rectify the received AC power into DC power; and a charging management unit to control DC power applied to the load by comparing the DC power with a threshold value.
Abstract:
The present invention relates to a method for identifying a wireless power receiver and devices therefor. According to an embodiment of the present invention, a wireless power transmission device for transmitting power wirelessly to a wireless power reception device may comprise: a power conversion unit for converting, to a specific direct current power, a direct current power received from a power supply unit; and a feedback circuit for controlling an output voltage of the power conversion unit so that intensity of current that is input to the power conversion unit is maintained constant. Therefore, the present invention is advantageous in that the present invention enables transmission of appropriate power to a wireless power receiver even in a situation where a coupling coefficient between transmission/reception coils changes abruptly.
Abstract:
A method of supplying power in a wireless power receiver can include receiving an AC power via a reception coil in the wireless power receiver; rectifying the AC power to a DC power; entering a charging mode by transferring the DC power to a load when a voltage of the DC power is equal to or greater than a first threshold voltage; and maintaining the load in the charging mode when the voltage of the DC power is equal to or greater than a second threshold voltage in a state of the charging mode, in which the first threshold voltage is greater than the second threshold voltage.
Abstract:
A method of supplying power in a wireless power receiver, can include receiving an AC power via a reception coil in the wireless power receiver; rectifying the AC power to a DC power; entering a charging mode by transferring the DC power to a load when a voltage of the DC power is equal to or greater than a first threshold voltage; maintaining the load in the charging mode when the voltage of the DC power is equal to or greater than a second threshold voltage in a state of the charging mode; and blocking the DC power to the load when the voltage of the DC power transitions from a voltage higher than the second threshold voltage to a lower voltage less than the second threshold voltage.
Abstract:
An apparatus and method for wirelessly transmitting electromagnetic energy are provided. The apparatus includes a power source, a transmission unit, and a measurement unit. The power source supplies a power according to a certain frequency. The transmission unit receives the power to wirelessly transmit the received power through self resonance. The measurement unit measures a phase difference between a voltage and current of the transmission unit. The certain frequency is controlled according to the phase difference. Accordingly, the apparatus and method control only the frequency of the power supply when a resonance frequency is changed by the change of an ambient environment, thus enhancing energy transmission efficiency.
Abstract:
A wireless power transmission apparatus is described that comprises a mounting member, an upper transmission coil disposed on the mounting member, and first and second terminals disposed in the mounting member. The upper transmission coil comprises an outer coil part connected to the first terminal and formed in one-turn with respect to a central axis between the first and second terminals, a first inner coil part connected to the outer coil part and formed in a half-turn on a first side of the central axis, a second inner coil part connected to the first inner coil part, formed in a half-turn on a second side of the central axis, a third inner coil part connected to the second inner coil part, formed in a half-turn on the first side of the central axis, and a fourth inner coil part connected to the third inner coil part and the second terminal, formed in a half-turn on the second side of the central axis.