Abstract:
A method for testing a data packet signal transceiver device under test (DUT). Following initial signal communications with a DUT, timing of further transmissions by the DUT may be effectively controlled by transmitting congestive communication channel signals to cause the DUT to detect apparent communication channel activity and in response thereto delay its own signal transmissions.
Abstract:
A method for communicating test results from a wireless device under test (DUT) using non-link testing resources. Test data resulting from testing one or more operations of the DUT are combined with other data to form one or more data packets for transmission to a tester. The test data occupies, e.g., via encoding, a portion of the one or more data packets designated for data identifying the DUT or a tester.
Abstract:
A method for coordinating testing of a wireless device under test (DUT) using non-link testing resources. Coordination between the tester and DUT is achieved by transmitting, from the tester to the DUT, predetermined numbers of data packets associated with predetermined tester identification data (e.g., MAC addresses identifying the tester transmitter). During test phases involving measurement and/or calibration of DUT transmit signals, the tester sends a number of data packets associated with one or more versions of tester identification data, in response to which the DUT performs internal operations (e.g., revising transmit power offsets). During later test phases involving validation of DUT performance, the tester sends another number of data packets associated with one or more versions of the tester identification data to inform the DUT that its testing has passed or failed, and/or is to be repeated.
Abstract:
A method for improving accuracy of power measurements of low power radio frequency (RF) signals received by a RF signal receiver in which power measurement accuracy taken at a low resolution is compensated with use of multiple RF signal attenuations at a finer resolution. In accordance with exemplary embodiments, incremental RF signal attenuations are applied to the received RF signal. An average of the power measurements, including those with the applied signal attenuations, has a net measurement error less than that of a direct power measurement.
Abstract:
System and method for providing variable time delays with high temporal granularity and consistent broadband delay performance for testing of time-of-arrival (ToA) or angle-of-arrival (AoA) performances of radio frequency (RF) signal transceivers. Multiple delays may be imparted to a common RF signal to provide multiple delayed RF signals corresponding to RF signals originating from a source location and received at various locations having respective position coordinates relative to respective orthogonal axes, plus another delayed RF signal corresponding to a RF signal originating from the source location and received at a location at an intersection of the orthogonal axes.
Abstract:
A method for assessing receiver signal reception performance during wireless beam steering operation of a radio frequency (RF) data packet signal transceiver capable of multiple input, multiple output (MIMO) operation. In response to transmissions of a sounding packet (SP) from a beamforming device (“beamformer”), a receiving device (“beamformee”) transmits a response data packet containing matrix data representing a beamforming feedback matrix (BFM) related to signal attenuation by the wireless signal path environment through which the beamformer and beamformee are communicating. Using the matrix data, a statistical variation can be computed which is indicative of signal reception performance of the beamformee.
Abstract:
System and method for confirming radio frequency (RF) signal connections with multiple devices under test (DUTs) tested concurrently using replicas of a RF test signal. Cabled signal connections between the signal source and the DUTs are monitored by sensing levels of outgoing and related reflection RF signals. These signal levels are compared against similar signal levels when the outgoing RF signals are provided to reference impedances. Alternatively, the cabled signal connections have lengths of known signal wavelengths and the RF test signal frequency is swept such that minimum and maximum time delays between the outgoing and reflection RF signals go through minimum and maximum signal cycles with a difference of at least one full cycle. The reflection RF signal magnitude and phase are monitored, from which peak and valley signal level differences and phase changes are identified to determine return loss and phase changes indicative of DUT connection.
Abstract:
A method of using tester data packet signals and control instructions for testing a radio frequency (RF) data packet signal transceiver device under test (DUT) capable of communicating using multiple radio access technologies (RATs) having one or more mutually distinct signal characteristics. During mutually alternating time intervals, selected ones of which are substantially contemporaneous, tester data packet signals and control instructions are used for concurrent testing and configuration for testing, respectively, of multiple RATs of the DUT.
Abstract:
A method for testing a data packet signal transceiver device under test (DUT) that minimizes time lost due to waiting for respective power levels of data packets transmitted by the DUT to settle at the desired nominal value for transmit signal testing. In accordance with exemplary embodiments, signals transmitted by the DUT during receive signal testing, e.g., as acknowledgement data packets, are transmitted at the nominal value for transmit signal testing, thereby allowing sufficient time for individual data packet signal power levels to settle and remain consistent at the nominal value by the time receive signal testing is completed and transmit signal testing is to begin.
Abstract:
System and method for testing a wireless data packet signal transceiver device under test (DUT) in which external control circuitry manages initiation of execution by a tester of test program instructions defining multiple self-terminating test control sequences in one or more desired sequences. The test control sequences may be pre-stored in a tester for subsequent execution under control of control signals sourced externally by the external control circuitry via separate control signals.